1
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Engwerda A, Kerstjens-Frederikse WS, Corsten-Janssen N, Dijkhuizen T, van Ravenswaaij-Arts CMA. The phenotypic spectrum of terminal 6q deletions based on a large cohort derived from social media and literature: a prominent role for DLL1. Orphanet J Rare Dis 2023; 18:59. [PMID: 36935482 PMCID: PMC10024851 DOI: 10.1186/s13023-023-02658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Terminal 6q deletions are rare, and the number of well-defined published cases is limited. Since parents of children with these aberrations often search the internet and unite via international social media platforms, these dedicated platforms may hold valuable knowledge about additional cases. The Chromosome 6 Project is a collaboration between researchers and clinicians at the University Medical Center Groningen and members of a Chromosome 6 support group on Facebook. The aim of the project is to improve the surveillance of patients with chromosome 6 aberrations and the support for their families by increasing the available information about these rare aberrations. This parent-driven research project makes use of information collected directly from parents via a multilingual online questionnaire. Here, we report our findings on 93 individuals with terminal 6q deletions and 11 individuals with interstitial 6q26q27 deletions, a cohort that includes 38 newly identified individuals. RESULTS Using this cohort, we can identify a common terminal 6q deletion phenotype that includes microcephaly, dysplastic outer ears, hypertelorism, vision problems, abnormal eye movements, dental abnormalities, feeding problems, recurrent infections, respiratory problems, spinal cord abnormalities, abnormal vertebrae, scoliosis, joint hypermobility, brain abnormalities (ventriculomegaly/hydrocephaly, corpus callosum abnormality and cortical dysplasia), seizures, hypotonia, ataxia, torticollis, balance problems, developmental delay, sleeping problems and hyperactivity. Other frequently reported clinical characteristics are congenital heart defects, kidney problems, abnormalities of the female genitalia, spina bifida, anal abnormalities, positional foot deformities, hypertonia and self-harming behaviour. The phenotypes were comparable up to a deletion size of 7.1 Mb, and most features could be attributed to the terminally located gene DLL1. Larger deletions that include QKI (> 7.1 Mb) lead to a more severe phenotype that includes additional clinical characteristics. CONCLUSIONS Terminal 6q deletions cause a common but highly variable phenotype. Most clinical characteristics can be linked to the smallest terminal 6q deletions that include the gene DLL1 (> 500 kb). Based on our findings, we provide recommendations for clinical follow-up and surveillance of individuals with terminal 6q deletions.
Collapse
Affiliation(s)
- Aafke Engwerda
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Nicole Corsten-Janssen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| |
Collapse
|
3
|
Genotype–Phenotype Correlations for Putative Haploinsufficient Genes in Deletions of 6q26-q27: Report of Eight Patients and Review of Literature. Glob Med Genet 2022; 9:166-174. [PMID: 35707784 PMCID: PMC9192176 DOI: 10.1055/s-0042-1743568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background
Cytogenomic analyses have been used to detect pathogenic copy number variants. Patients with deletions at 6q26-q27 present variable clinical features. We reported clinical and cytogenomic findings of eight unrelated patients with a deletion of 6q26-q27. A systematic review of the literature found 28 patients with a deletion of 6q26-q27 from 2010 to 2020.
Results
For these 36 patients, the sex ratio showed equal occurrence between males and females; 29 patients (81%) had a terminal deletion and seven patients (19%) had a proximal or distal interstitial deletion. Of the 22 patients with parental studies, deletions of de novo, maternal, paternal, and bi-parental inheritance accounted for 64, 18, 14, and 4% of patients, respectively. The most common clinical findings were brain abnormalities (100%) in fetuses observed by ultrasonography followed by developmental delay and intellectual disability (81%), brain abnormalities (72%), facial dysmorphism (66%), hypotonia (63%), learning difficulty or language delay (50%), and seizures (47%) in pediatric and adult patients. Anti-epilepsy treatment showed the effect on controlling seizures in these patients. Cytogenomic mapping defined one proximal critical region at 6q26 containing the putative haploinsufficient gene
PRKN
and one distal critical region at 6q27 containing two haploinsufficient genes
DLL1
and
TBP
. Deletions involving the
PRKN
gene could associate with early-onset Parkinson disease and autism spectrum disorder; deletions involving the
DLL1
gene correlate with the 6q terminal deletion syndrome.
Conclusion
The genotype–phenotype correlations for putative haploinsufficient genes in deletions of 6q26-q27 provided evidence for precise diagnostic interpretation, genetic counseling, and clinical management of patients with a deletion of 6q26-q27.
Collapse
|
4
|
Lesieur-Sebellin M, Till M, Khau Van Kien P, Herve B, Bourgon N, Dupont C, Tabet AC, Barrois M, Coussement A, Loeuillet L, Mousty E, Ea V, El Assal A, Mary L, Jaillard S, Beneteau C, Le Vaillant C, Coutton C, Devillard F, Goumy C, Delabaere A, Redon S, Laurent Y, Lamouroux A, Massardier J, Turleau C, Sanlaville D, Cantagrel V, Sonigo P, Vialard F, Salomon LJ, Malan V. Terminal 6q deletions cause brain malformations, a phenotype mimicking heterozygous DLL1 pathogenic variants: A multicenter retrospective case series. Prenat Diagn 2021; 42:118-135. [PMID: 34894355 DOI: 10.1002/pd.6074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.
Collapse
Affiliation(s)
- Marion Lesieur-Sebellin
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - Marianne Till
- Laboratoire de Cytogénétique, service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | | | - Bérénice Herve
- Département de Génétique, CHI Poissy Saint-Germain, Saint-Germain, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Nicolas Bourgon
- Service d'Obstétrique et de Médecine Fœtale, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Céline Dupont
- Département de Génétique, Unité de Cytogénétique, Hôpital Robert Debré, APHP Nord, Paris, France
| | - Anne-Claude Tabet
- Département de Génétique, Unité de Cytogénétique, Hôpital Robert Debré, APHP Nord, Paris, France
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Mathilde Barrois
- Maternité Port Royal, APHP Centre, Hôpital Cochin, Paris, France
| | - Aurélie Coussement
- Service des Maladies Génétiques de système et d'organes, APHP-Centre, Hôpital Cochin, Paris, France
| | - Laurence Loeuillet
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Eve Mousty
- Service de Gynécologie Obstétrique, Hôpital Caremeau, Nîmes, France
| | - Vuthy Ea
- UF de Cytogénétique et Génétique Médicale, Hôpital Caremeau, Nîmes, France
| | - Amal El Assal
- Département de Gynécologie Obstétrique, CHI Poissy Saint-Germain, Saint-Germain, France
| | - Laura Mary
- Service d'Anatomie Pathologique, CHU Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET, Université Rennes 1, Rennes, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- UF de Fœtopathologie et Génétique, CHU de Nantes, Nantes, France
| | | | - Charles Coutton
- Service de Génétique, Génomique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences, Equipe Génétique, Epigénétique et Thérapies de l'infertilité, Grenoble, France
| | - Françoise Devillard
- Service de Génétique, Génomique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Carole Goumy
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | | | - Sylvia Redon
- CHU Brest, Inserm, Université de Brest, Brest, France
| | - Yves Laurent
- Service de Gynécologie et Obstétrique, GHBS Lorient, Lorient, France
| | - Audrey Lamouroux
- Service de Génétique Clinique, CHU Montpellier, Université de Montpellier, Montpellier, France
- Service de Gynécologie Obstétrique, CHU Nîmes, Université de Montpellier, Nîmes, France
| | - Jérôme Massardier
- Service de Gynécologie et Obstétrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Catherine Turleau
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Damien Sanlaville
- Laboratoire de Cytogénétique, service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Vincent Cantagrel
- Université de Paris, Institut Imagine, Laboratoire de génétique des troubles du neurodéveloppement, Paris, France
- Université de Paris, Paris, France
| | - Pascale Sonigo
- Service de Radiologie Pédiatrique, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - François Vialard
- Département de Génétique, CHI Poissy Saint-Germain, Saint-Germain, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Laurent J Salomon
- Service d'Obstétrique et de Médecine Fœtale, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Paris, France
| | - Valérie Malan
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Institut Imagine, Laboratoire de génétique des troubles du neurodéveloppement, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
5
|
Cai M, Huang H, Xu L, Lin N. Classifying and Evaluating Fetuses With Ventriculomegaly in Genetic Etiologic Studies. Front Genet 2021; 12:682707. [PMID: 34285689 PMCID: PMC8286336 DOI: 10.3389/fgene.2021.682707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
The association between genetics and fetuses with ventriculomegaly (VM) is unknown. This study aimed to classify and evaluate abnormal copy number variations (CNVs) in fetuses with VM. From December 2016 to September 2020, amniotic fluid or umbilical cord blood from 293 pregnant women carrying fetuses with VM was extracted for single-nucleotide polymorphism microarray (SNP array). Among 293 fetuses with VM, 31 were detected with abnormal CNVs, including 22 with pathogenic CNVs (7.51%) and nine with variation of uncertain clinical significance (VUS) CNVs (3.07%). Of the 22 fetuses with pathogenic CNVs, 13 had known disease syndromes. Among the 293 fetuses, 133 had mild isolated VM [pathogenic CNVs, 7/133 (5.26%)]; 142 had mild non-isolated VM [pathogenic CNVs, 13/142 (9.15%)]; 12 had severe isolated VM [pathogenic CNVs, 2/12 (16.67%)]; and six had severe non-isolated VM (no abnormal CNVs was detected). There was no statistical significance in the rate of pathogenic CNVs among the four groups (P = 0.326, P > 0.05). Among the 267 fetuses with successful follow-up, 38 were terminated (of these, 21 had pathogenic CNVs). Of the 229 fetuses, two had developmental delay and the remaining 227 had a good prognosis after birth. Overall, the results are useful for the detection of fetal microdeletion/microduplication syndrome and for the accurate assessment of fetal prognosis in prenatal consultation.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Ventriculomegaly is one of the most common abnormal sonographic findings, which is associated with congenital infection, chromosomal and additional structural abnormalities. Currently, karyotype analysis is the primary method to detect chromosomal abnormalities in fetuses with ventriculomegaly. Recently, with the introduction of chromosomal microarray analysis (CMA) in prenatal diagnosis, copy number variations (CNVs) have been identified in cases of ventriculomegaly. The purpose of this review is to summarize the current knowledge about the genetic cause of fetal ventriculomegaly, with particular attention to primary articles regarding the association between CNVs and fetal ventriculomegaly. RECENT FINDINGS Recent studies have disclosed that in addition to numerical chromosomal abnormalities and large chromosomal imbalances, pathogenic CNVs are another important genetic cause of fetal ventriculomegaly, which may be involved in the pathological process of fetal ventriculomegaly as well as postnatal neurodevelopmental disorders. Furthermore, it is reported that the incidences of pathogenic CNVs in fetuses with ventriculomegaly were associated with the presence of other structural anomalies, but were irrelevant to the severity of ventriculomegaly. SUMMARY CNVs are an important cause of fetal ventriculomegaly and CMA should be offered to all fetuses with ventriculomegaly, regardless of the degree of ventriculomegaly or whether combined with other structural anomalies.
Collapse
|
7
|
Thakur M, Bronshtein E, Hankerd M, Adekola H, Puder K, Gonik B, Ebrahim S. Genomic detection of a familial 382 Kb 6q27 deletion in a fetus with isolated severe ventriculomegaly and her affected mother. Am J Med Genet A 2018; 176:1985-1990. [PMID: 30194807 DOI: 10.1002/ajmg.a.40376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/26/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022]
Abstract
Terminal deletions of the chromosome 6q27 region are rare genomic abnormalities, linked to specific brain malformations and other neurological phenotypes. Reported cases have variable sized genomic deletions that harbor several genes including the DLL1 and TBP. We report on an inherited 0.38 Mb terminal deletion of chromosome 6q27 in a 22-week fetus with isolated bilateral ventriculomegaly and her affected mother using microarray-based comparative genomic hybridization and fluorescent in situ hybridization (FISH). The deleted region harbors at least seven genes including DLL1 and TBP. The affected mother had a history of hydrocephalus, developmental delay, and seizures commonly associated with DLL1 and TBP 6q27 deletions. This deletion is one of the smallest reported isolated 6q27 terminal deletions. Our data provides additional evidence that haploinsufficiency of the DLL1 and TBP genes may be sufficient to cause the ventriculomegaly, seizures, and developmental delays associated with terminal 6q27 deletions, indicating a plausible role in the abnormal development of the central nervous system.
Collapse
Affiliation(s)
- Mili Thakur
- Division of Genetic and Metabolic Disorders, Department of Pediatrics and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Elena Bronshtein
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Michael Hankerd
- Cytogenetics Laboratory, Detroit Medical Center University Laboratories, Detroit, Michigan
| | - Henry Adekola
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Karoline Puder
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Bernard Gonik
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Salah Ebrahim
- Cytogenetics Laboratory, Detroit Medical Center University Laboratories, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
8
|
Li Y, Choy KW, Xie HN, Chen M, He WY, Gong YF, Liu HY, Song YQ, Xian YX, Sun XF, Chen XJ. Congenital hydrocephalus and hemivertebrae associated with de novo partial monosomy 6q (6q25.3→qter). Balkan J Med Genet 2015; 18:77-84. [PMID: 26929909 PMCID: PMC4768829 DOI: 10.1515/bjmg-2015-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to describe a prenatal case of congenital hydrocephalus and hemivertebrae with a 6q terminal deletion and to investigate the possible correlation between the genotype and phenotype of the proband. We performed an array-based comparative genomic hybridization (aCGH) analysis on a fetus diagnosed with congenital hydrocephalus and hemivertebrae. The deletion, spanning 10.06 Mb from 6q25.3 to 6qter, was detected in this fetus. The results of aCGH, karyotype and fluorescent in situ hybridization (FISH) analyses in the healthy parents were normal, which confirmed that the proband’s copy-number variant (CNV) was de novo. This deleted region encompassed 97 genes, including 28 OMIM genes. We discussed four genes (TBP, PSMB1, QKI and Pacrg) that may be responsible for hydrocephalus while the T gene may have a role in hemivertebra. We speculate that five genes in the 6q terminal deletion region were potentially associated with hemivertebrae and hydrocephalus in the proband.
Collapse
Affiliation(s)
- Y Li
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - K-W Choy
- Department of Obstetrics & Gynaecology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - H-N Xie
- Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated hospital of Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - M Chen
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - W-Y He
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Y-F Gong
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - H-Y Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Y-Q Song
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Y-X Xian
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - X-F Sun
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - X-J Chen
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|