1
|
Krogh E, Ringgaard S, Kelly B, Rungsiprakarn P, Rychik J, Gaynor JW, Biko DM, Hjortdal V, Lauridsen MH. Lung volumes are increased in fetuses with transposition of the great arteries on intrauterine MRI. Cardiol Young 2024:1-6. [PMID: 39422107 DOI: 10.1017/s1047951124026398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Fetal brain size is decreased in some children with complex CHDs, and the distribution of blood and accompanying oxygen and nutrients is regionally skewed from early fetal life dependent on the CHD. In transposition of the great arteries, deoxygenated blood preferentially runs to the brain, whereas the more oxygenated blood is directed towards the lungs and the abdomen. Knowledge of whether this impacts intrauterine organ development is limited. We investigated lung, liver, and total intracranial volume in fetuses with transposition of the great arteries using MRI.Eight fetuses with dextro-transposition and without concomitant disease or chromosomal abnormalities and 42 fetuses without CHD or other known diseases were scanned once or twice at gestational age 30 through 39 weeks. The MRI scans were conducted on a 1.5T system, using a 2D balanced steady-state free precession sequence. Slices acquired covered the entire fetus, slice thickness was 10 mm, pixel size 1.5 × 1.5 mm, and scan duration was 30 sec.The mean lung z score was significantly larger in fetuses with transposition compared with those without a CHD; mean difference is 1.24, 95% CI:(0.59;1.89), p < 0.001. The lung size, corrected for estimated fetal weight, was larger than in the fetuses without transposition; mean difference is 8.1 cm3/kg, 95% CI:(2.5;13.7 cm3/kg), p = 0.004.In summary, fetuses with dextro-transposition of the great arteries had both absolute and relatively larger lung volumes than those without CHD. No differences were seen in liver and total intracranial volume. Despite the small number of cases, the results are interesting and warrant further investigation.
Collapse
Affiliation(s)
- Emil Krogh
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Benjamin Kelly
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiothoracic and Vascular Surgery T, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jack Rychik
- Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Mette Høj Lauridsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Wang KCW, James AL. Small for gestational age at term and adult lung function. Respirology 2023; 28:99-100. [PMID: 36411250 DOI: 10.1111/resp.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Respiratory Environmental Health, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
The Evolution and Developing Importance of Fetal Magnetic Resonance Imaging in the Diagnosis of Congenital Cardiac Anomalies: A Systematic Review. J Clin Med 2022; 11:jcm11237027. [PMID: 36498602 PMCID: PMC9738414 DOI: 10.3390/jcm11237027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a reliable method, with a complementary role to Ultrasound (US) Echocardiography, that can be used to fully comprehend and precisely diagnose congenital cardiac malformations. Besides the anatomical study of the fetal cardiovascular system, it allows us to study the function of the fetal heart, remaining, at the same time, a safe adjunct to the classic fetal echocardiography. MRI also allows for the investigation of cardiac and placental diseases by providing information about hematocrit, oxygen saturation, and blood flow in fetal vessels. It is crucial for fetal medicine specialists and pediatric cardiologists to closely follow the advances of fetal cardiac MRI in order to provide the best possible care. In this review, we summarize the advance in techniques and their practical utility to date.
Collapse
|
4
|
Avena-Zampieri CL, Hutter J, Rutherford M, Milan A, Hall M, Egloff A, Lloyd DFA, Nanda S, Greenough A, Story L. Assessment of the fetal lungs in utero. Am J Obstet Gynecol MFM 2022; 4:100693. [PMID: 35858660 PMCID: PMC9811184 DOI: 10.1016/j.ajogmf.2022.100693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
Antenatal diagnosis of abnormal pulmonary development has improved significantly over recent years because of progress in imaging techniques. Two-dimensional ultrasound is the mainstay of investigation of pulmonary pathology during pregnancy, providing good prognostication in conditions such as congenital diaphragmatic hernia; however, it is less validated in other high-risk groups such as those with congenital pulmonary airway malformation or preterm premature rupture of membranes. Three-dimensional assessment of lung volume and size is now possible using ultrasound or magnetic resonance imaging; however, the use of these techniques is still limited because of unpredictable fetal motion, and such tools have also been inadequately validated in high-risk populations other than those with congenital diaphragmatic hernia. The advent of advanced, functional magnetic resonance imaging techniques such as diffusion and T2* imaging, and the development of postprocessing pipelines that facilitate motion correction, have enabled not only more accurate evaluation of pulmonary size, but also assessment of tissue microstructure and perfusion. In the future, fetal magnetic resonance imaging may have an increasing role in the prognostication of pulmonary abnormalities and in monitoring current and future antenatal therapies to enhance lung development. This review aims to examine the current imaging methods available for assessment of antenatal lung development and to outline possible future directions.
Collapse
Affiliation(s)
- Carla L Avena-Zampieri
- Department of Women and Children's Health, King's College London, London, United Kingdom; Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Anna Milan
- Neonatal Unit, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Megan Hall
- Department of Women and Children's Health, King's College London, London, United Kingdom; Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - David F A Lloyd
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Surabhi Nanda
- Fetal Medicine Unit, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Anne Greenough
- Department of Women and Children's Health, King's College London, London, United Kingdom; Neonatal Unit, King's College Hospital, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, United Kingdom; National Institute for Health and Care Research Biomedical Research Centre, Guy's & St Thomas National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Lisa Story
- Department of Women and Children's Health, King's College London, London, United Kingdom; Centre for the Developing Brain, King's College London, London, United Kingdom; Fetal Medicine Unit, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom.
| |
Collapse
|
5
|
Sun L, van Amerom JFP, Marini D, Portnoy S, Lee FT, Saini BS, Lim JM, Aguet J, Jaeggi E, Kingdom JC, Macgowan CK, Miller SP, Huang G, Seed M. MRI characterization of hemodynamic patterns of human fetuses with cyanotic congenital heart disease. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:824-836. [PMID: 34097323 DOI: 10.1002/uog.23707] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES To characterize, using magnetic resonance imaging (MRI), the distribution of blood flow and oxygen transport in human fetuses with subtypes of congenital heart disease (CHD) that present with neonatal cyanosis. METHODS Blood flow was measured in the major vessels of 152 late-gestation human fetuses with CHD and 40 gestational-age-matched normal fetuses, using cine phase-contrast MRI. Oxygen saturation (SaO2 ) was measured in the major vessels of 57 fetuses with CHD and 40 controls. RESULTS Compared with controls, we found lower combined ventricular output in fetuses with single-ventricle physiology, with the lowest being observed in fetuses with severe forms of Ebstein's anomaly. Obstructive lesions of the left or right heart were associated with increased flow across the contralateral side. Pulmonary blood flow was reduced in fetuses with Ebstein's anomaly, while those with Ebstein's anomaly and tricuspid atresia had reduced umbilical flow. Flow in the superior vena cava was elevated in fetuses with transposition of the great arteries, normal in fetuses with hypoplastic left heart, tetralogy of Fallot or tricuspid atresia and reduced in fetuses with Ebstein's anomaly. Umbilical vein SaO2 was reduced in fetuses with hypoplastic left heart or tetralogy of Fallot. Ascending aorta and superior vena cava SaO2 were reduced in nearly all CHD subtypes. CONCLUSIONS Fetuses with cyanotic CHD exhibit profound changes in the distribution of blood flow and oxygen transport, which result in changes in cerebral, pulmonary and placental blood flow and oxygenation. These alterations of fetal circulatory physiology may influence the neonatal course and help account for abnormalities of prenatal growth and development that have been described in newborns with cyanotic CHD. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L Sun
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J F P van Amerom
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - D Marini
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - S Portnoy
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - F-T Lee
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - B S Saini
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J M Lim
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J Aguet
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - E Jaeggi
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J C Kingdom
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - C K Macgowan
- Department of Medical Biophysics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - S P Miller
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - G Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - M Seed
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Moradi B, Ghorbani Z, Shirazi M, Gity M, Kazemi MA, Sharifian H, Rahimi Sharbaf F. Comparison of fetal lung maturation in fetuses with intrauterine growth restriction with control group, using lung volume, lung/liver and lung/muscle signal intensity and apparent diffusion coefficient ratios on different magnetic resonance imaging sequences. J Matern Fetal Neonatal Med 2021; 35:8936-8944. [PMID: 34847801 DOI: 10.1080/14767058.2021.2008349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To compare lung volume, lung apparent diffusion coefficient (ADC) and signal intensity ratio (SIR) on different magnetic resonance imaging (MRI) sequences between intrauterine growth restriction (IUGR) fetuses and the control group. MATERIALS AND METHODS 49 IUGR and 58 non-IUGR fetuses were imaged using 3 Tesla MRI units. Total lung volume (TLV), lung/liver SIR (LLSIR) and lung/muscle SIR (LMSIR) in T1 and T2-weighted sequences and lung/liver ADC ratio (LLADCR) and lung/muscle ADC ratio (LMADCR) were assessed. RESULTS LLSIR and LMSIR were significantly higher in the T1-weighted sequence (p-value: .03) and LLADCR and LMADCR were significantly lower on diffusion-weighted imaging (DWI) in IUGR fetuses compared to the control group (p-value: .01). There was no significant difference in SIRs in the T2-weighted sequence between the two groups. Although TLV was increased with gestational age in both groups, it was significantly lower in the IUGR group (mean: 82 ± 22.7 ml vs. 110.8 ± 18 ml, p-value: <.001). CONCLUSION The T1-weighted sequence and DWI seem to be better than the T2-weighted sequence for assessing the faint difference of lung maturity between groups. However, SIR differences were not as meaningful as TLV differences and this could be related to the complex maturation process in IUGR fetuses as the effect of higher endogenous corticosteroids.
Collapse
Affiliation(s)
- Behnaz Moradi
- Department of Radiology, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohre Ghorbani
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Shirazi
- Maternal, Fetal and Neonatal Research Center, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Gity
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Kazemi
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Radiology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hashem Sharifian
- Department of Radiology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahimi Sharbaf
- Maternal, Fetal and Neonatal Research Center, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Porayette P, Madathil S, Sun L, Jaeggi E, Grosse-Wortmann L, Yoo SJ, Hickey E, Miller SP, Macgowan CK, Seed M. MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. Prenat Diagn 2016; 36:274-81. [PMID: 26701792 DOI: 10.1002/pd.4762] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We investigated the physiologic impact of acute maternal hyperoxygenation (MH) in human fetuses with and without congenital heart disease (CHD) using fetal cardiac magnetic resonance (CMR) in order to explore the potential therapeutic benefits of chronic MH. METHODS We examined 17 normal and 20 late gestation human fetuses with CHD on a 1.5 T CMR system. Flows were measured in major fetal vessels using phase contrast MRI. The T2 of umbilical venous blood was measured using T2 mapping. The measurements were repeated during acute MH. The results were compared using a Student's t-test, with p-value ≤0.05 considered statistically significant. RESULTS At baseline, the umbilical venous T2 (oxygen saturation) was lower in CHD fetuses than in normals, with significant increase with MH (p = 0.01). Both groups showed significant increase in pulmonary blood flow during MH, which was more dramatic in CHD (p = 0.005). There was a reduction in ductus arteriosus flow in CHD during MH (p = 0.04). There was no significant difference in blood flow in any of the other major vessels. CONCLUSION This study suggests that fetal MR identifies the expected hemodynamic changes associated with acute MH. MRI could be useful as a method for monitoring the impact of chronic MH in fetuses with CHD.
Collapse
Affiliation(s)
| | | | - Liqun Sun
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edgar Jaeggi
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Shi-Joon Yoo
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward Hickey
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Mike Seed
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Berger-Kulemann V, Berger R, Mlczoch E, Sternal D, Mailath-Pokorny M, Hachemian N, Prayer D, Weber M, Salzer-Muhar U. The Effects of Hemodynamic Alterations on Lung Volumes in Fetuses with Tetralogy of Fallot: An MRI Study. Pediatr Cardiol 2015; 36:1287-93. [PMID: 25894759 DOI: 10.1007/s00246-015-1159-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
This study assessed whether the presence of tetralogy of Fallot (TOF) affects fetal lung development and whether these fetuses are at risk of pulmonary hypoplasia (PH). Furthermore, we investigated whether the degree of the concomitant pulmonary valve (PV) stenosis or a stenosis in the branch pulmonary arteries correlates with the fetal lung volume. Lung volumetry was performed in 16 fetuses with TOF who underwent MRI between gestational weeks 21 and 35 and in 22 controls. Fetal biometric data and the diameters of the PVs were evaluated by ultrasound. PV and branch pulmonary artery diameters were standardized (z-scores), and fetal lung volume/fetal body weight (FLV/FBW) ratios (ml/g) were calculated. The mean FLV/FBW ratio (0.031 ± 0.009 ml/g) in the TOF group was statistically significantly lower than in the control group (0.041 ± 0.009 ml/g; P = 0.003). None of the fetuses with TOF met the criterion for PH. FLV did not correlate with the degree of PV stenosis, but rather with the presence of a significant stenosis in at least one branch pulmonary artery. The presence of TOF moderately affects fetal lung growth, which is apparently not dependent on the degree of the PV stenosis. However, only an additional stenosis in at least one branch pulmonary artery was associated with a small FLV, but not with PH. Thus, reduced pulmonary blood flow may be offset by additional factors, such as the ability to establish a sufficient collateral system and to alter structural vascular size and, thus, pulmonary vascular resistance.
Collapse
Affiliation(s)
- Vanessa Berger-Kulemann
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, AKH, Waehringer Guertel 18-20, 1090, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|