1
|
Wu K, Chen W, He R, Feng C, Cai B, Zhao X. Fetal nucleated red blood cells in maternal peripheral blood for non-invasive prenatal diagnosis. CHINESE SCIENCE BULLETIN 2023; 68:4119-4134. [DOI: 10.1360/tb-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Chen Y, Wu Z, Sutlive J, Wu K, Mao L, Nie J, Zhao XZ, Guo F, Chen Z, Huang Q. Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells. J Nanobiotechnology 2022; 20:546. [PMID: 36585678 PMCID: PMC9805221 DOI: 10.1186/s12951-022-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) aims to detect fetal-related genetic disorders before birth by detecting markers in the peripheral blood of pregnant women, holding the potential in reducing the risk of fetal birth defects. Fetal-nucleated red blood cells (fNRBCs) can be used as biomarkers for NIPD, given their remarkable nature of carrying the entire genetic information of the fetus. Here, we review recent advances in NIPD technologies based on the isolation and analysis of fNRBCs. Conventional cell separation methods rely primarily on physical properties and surface antigens of fNRBCs, such as density gradient centrifugation, fluorescence-activated cell sorting, and magnetic-activated cell sorting. Due to the limitations of sensitivity and purity in Conventional methods, separation techniques based on micro-/nanomaterials have been developed as novel methods for isolating and enriching fNRBCs. We also discuss emerging methods based on microfluidic chips and nanostructured substrates for static and dynamic isolation of fNRBCs. Additionally, we introduce the identification techniques of fNRBCs and address the potential clinical diagnostic values of fNRBCs. Finally, we highlight the challenges and the future directions of fNRBCs as treatment guidelines in NIPD.
Collapse
Affiliation(s)
- Yanyu Chen
- grid.207374.50000 0001 2189 3846Academy of Medical Sciences, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Zhuhao Wu
- grid.411377.70000 0001 0790 959XDepartment of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405 USA
| | - Joseph Sutlive
- grid.38142.3c000000041936754XDivision of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ke Wu
- grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Lu Mao
- grid.207374.50000 0001 2189 3846Academy of Medical Sciences, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Jiabao Nie
- grid.38142.3c000000041936754XDivision of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,grid.261112.70000 0001 2173 3359Department of Biological Sciences, Northeastern University, Boston, MA 02115 USA
| | - Xing-Zhong Zhao
- grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
| | - Zi Chen
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Barrett AN, Huang Z, Aung S, Ho SSY, Roslan NS, Mahyuddin AP, Biswas A, Choolani M. Whole-Chromosome Karyotyping of Fetal Nucleated Red Blood Cells Using the Ion Proton Sequencing Platform. Genes (Basel) 2022; 13:genes13122257. [PMID: 36553524 PMCID: PMC9778445 DOI: 10.3390/genes13122257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The current gold standard for the definitive diagnosis of fetal aneuploidy uses either chorionic villus sampling (CVS) or amniocentesis, both of which are which are invasive procedures carrying a procedure-related risk of miscarriage of up to 0.1-0.2%. Non-invasive prenatal diagnosis using fetal nucleated red blood cells (FNRBCs) isolated from maternal peripheral venous blood would remove this risk of miscarriage since these cells can be isolated from the mother's blood. We aimed to detect whole-chromosome aneuploidies from single nucleated fetal red blood cells using whole-genome amplification followed by massively parallel sequencing performed on a semiconductor sequencing platform. Twenty-six single cells were picked from the placental villi of twelve patients thought to have a normal fetal genotype and who were undergoing elective first-trimester surgical termination of pregnancy. Following karyotyping, it was subsequently found that two of these cases were also abnormal (one trisomy 15 and one mosaic genotype). One single cell from chorionic villus samples for two patients carrying a fetus with trisomy 21 and two single cells from women carrying fetuses with T18 were also picked. Pooled libraries were sequenced on the Ion Proton and data were analysed using Ion Reporter software. We correctly classified fetal genotype in all 24 normal cells, as well as the 2 T21 cells, the 2 T18 cells, and the two T15 cells. The two cells picked from the fetus with a mosaic result by CVS were classified as unaffected, suggesting that this was a case of confined placental mosaicism. Fetal sex was correctly assigned in all cases. We demonstrated that semiconductor sequencing using commercially available software for data analysis can be achieved for the non-invasive prenatal diagnosis of whole-chromosome aneuploidy with 100% accuracy.
Collapse
Affiliation(s)
- Angela N. Barrett
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Zhouwei Huang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Sarah Aung
- iGene Laboratory Pte Ltd., 1 Science Park Road #04-10, The Capricorn, Singapore 117528, Singapore
| | - Sherry S. Y. Ho
- iGene Laboratory Pte Ltd., 1 Science Park Road #04-10, The Capricorn, Singapore 117528, Singapore
| | - Nur Syazana Roslan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Aniza P. Mahyuddin
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Department of Obstetrics & Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Department of Obstetrics & Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
4
|
Research Progress in Isolation and Enrichment of Fetal Cells from Maternal Blood. J CHEM-NY 2022. [DOI: 10.1155/2022/7131241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prenatal diagnosis is an important means of early diagnosis of genetic diseases, which can effectively reduce the risk of birth defects. Free fetal cells, as a carrier of intact fetal genetic material, provide hope for the development of high-sensitivity and high-accuracy prenatal diagnosis technology. However, the number of fetal cells is small and it is difficult to apply clinically. In recent years, noninvasive prenatal diagnosis (NIPD) technology for fetal genetic material in maternal peripheral blood has developed rapidly, which makes it possible to diagnose genetic diseases by fetal cells in maternal peripheral blood. This article reviewed the current status of fetal cell separation and enrichment technology and its application in noninvasive prenatal diagnosis technology.
Collapse
|
5
|
Nemescu D, Constantinescu D, Gorduza V, Carauleanu A, Caba L, Navolan DB. Comparison between paramagnetic and CD71 magnetic activated cell sorting of fetal nucleated red blood cells from the maternal blood. J Clin Lab Anal 2020; 34:e23420. [PMID: 32588489 PMCID: PMC7521243 DOI: 10.1002/jcla.23420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
Background Fetal nucleated red blood cells (NRBC) from maternal circulation are rare events but can be enriched and used to evaluate the genetics of the fetus. We compared two simplified selection methods of the fetal cells from the maternal blood. Methods We isolated fetal cells from maternal blood through double‐density gradient centrifugation followed either by magnetic cell selection, based on the paramagnetic proprieties of the NRBC hemoglobin, converted to methemoglobin, or by a positive magnetic‐activated cell sorting (MACS) enrichment, using anti‐CD71 monoclonal antibodies. Finally, the cells were identified through fluorescence in situ hybridization (FISH) with specific chromosome X and Y probes. Results We processed 10 mL of peripheral blood samples from 27 pregnant women with singleton normal male fetuses. Hemoglobin‐based enrichment isolated significantly more NRBCs: 29.7 × 104 cells than anti‐CD71 MACS: 10.1 × 104 cells (P < .001). The FISH analysis found at least one XY cell in 81.5% and 61.5% of cases, respectively, for paramagnetic and anti‐CD71 selection. Also, the average number of XY cells identified through paramagnetic selection was 5.09 ± 2.5, significantly higher than those observed through CD71 sorting: 3.38 ± 1.7 cells (average ± SE) (P = .03). Conclusion The combination of density gradient centrifugation with paramagnetic selection has the advantage of simplicity and achieves a minimal manipulation and treatment of cells. It yields an increased number of NRBCs and FISH confirmed fetal cells, compared to the anti‐CD71 sorting.
Collapse
Affiliation(s)
- Dragos Nemescu
- Grigore T Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Vlad Gorduza
- Grigore T Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Lavinia Caba
- Grigore T Popa University of Medicine and Pharmacy, Iasi, Romania
| | | |
Collapse
|
6
|
Phadke SR, Puri RD, Ranganath P. Prenatal screening for genetic disorders: Suggested guidelines for the Indian Scenario. Indian J Med Res 2018; 146:689-699. [PMID: 29664026 PMCID: PMC5926339 DOI: 10.4103/ijmr.ijmr_1788_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prenatal testing is the best strategy for reducing the burden of genetic disorders and congenital disabilities that cause significant postnatal functional impairment. Universal prenatal screening is advisable for common genetic disorders and congenital anomalies such as Down syndrome, beta-thalassaemia and neural tube defects. Several prenatal-screening tests are now available for Down syndrome, but knowledge about the appropriate timing of the test and the need for pre- and post-test counselling may not be updated among the primary care physicians. There is also a considerable degree of confusion regarding the prenatal screening test to be chosen in each case, due to the availability of a number of new and advanced screening techniques. At present, there is no nation-wide consensus regarding the nature and timing of these prenatal-screening protocols. Due to the absence of any definite guidelines and the additional lacunae in the awareness regarding the appropriate prenatal screening in the country, the optimum benefits of these screening protocols are not reaching the population. This review focuses on the various prenatal screening and diagnostic tests that are available for common genetic conditions and congenital disabilities and attempts to outline the most cost-effective and gestational age-appropriate strategies for prenatal screening for the Indian healthcare set-up. The recommendations suggested would serve as a source guide for formulating prenatal-screening guidelines for reducing the incidence of common genetic disorders and congenital disabilities in India.
Collapse
Affiliation(s)
- Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ratna D Puri
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Prajnya Ranganath
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
7
|
Huang ZW, Fong CY, Gauthaman K, Sukumar P, Mahyuddin AP, Barrett AN, Bongso A, Choolani M. Biology of human primitive erythroblasts for application in noninvasive prenatal diagnosis. Prenat Diagn 2018; 38:673-684. [PMID: 29876942 DOI: 10.1002/pd.5295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Human primitive erythroblasts produced during early embryogenesis have been found in maternal circulation at early gestation and are considered good target cells for noninvasive prenatal diagnosis. We aimed to gain a better understanding of the biology of primitive erythroblasts and maximize their potential utility for noninvasive prenatal diagnosis. METHODS Cells were obtained from first trimester human placental tissues. Biological properties including surface antigen composition, differentiation, proliferation, enucleation, and degeneration were studied as gestation progressed. A microdroplet culture system was developed to observe the behavior of these cells in vitro. RESULTS Histology showed that primitive erythroblasts undergo maturation from polychromatic to orthochromatic erythroblasts and can differentiate spontaneously in vitro. Cell surface markers and nuclear gene expression suggest that the cells do not possess stemness properties, despite being primitive in nature. They have limited proliferative activity and highly deacetylated chromatin, but a microdroplet culture system can prolong their viability under normoxic conditions. No apoptosis was seen by 11 weeks' gestation, and there was no enucleation in vitro. CONCLUSION These properties confirm that viable cells with intact nuclei can be obtained at very early gestation for genetic analysis.
Collapse
Affiliation(s)
- Zhou-Wei Huang
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Chui-Yee Fong
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Kalamegam Gauthaman
- King Abdulaziz University, King Fahd Medical Research Centre, Jeddah, 21589, Saudi Arabia
| | - Ponnusamy Sukumar
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore.,Management Development Institute of Singapore, 501 Stirling Road, 148951, Singapore
| | - Aniza P Mahyuddin
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Angela N Barrett
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Ariff Bongso
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| | - Mahesh Choolani
- National University of Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, 119228, Singapore
| |
Collapse
|
8
|
Xu X, Huang L, Su Y, Yan Q. The complete genome sequence of Vibrio aestuarianus W-40 reveals virulence factor genes. Microbiologyopen 2018; 7:e00568. [PMID: 29314726 PMCID: PMC6011983 DOI: 10.1002/mbo3.568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022] Open
Abstract
Vibrio aestuarianus is an opportunistic environmental pathogen that has been associated with epidemics in cultured shrimp Penaeus vannamei. Hepatopancreas microsporidian (HPM) and monodon slow growth syndrome (MSGS) have been reported in cultured P. vannamei. In this study, we sequenced and assembled the whole genome of V. aestuarianus strain W‐40, a strain that was originally isolated from the intestines of an infected P. vannamei. The genome of V. aestuarianus strain W‐40 contains two circular chromosomes of 483,7307 bp with a 46.23% GC content. We identified 4,457 open reading frames (ORFs) that occupy 86.35% of the genome. Vibrio aestuarianus strain W‐40 consists primarily of the ATP‐binding cassette (ABC) transporter system and the phosphotransferase system (PTS). CagA is a metabolism system that includes bacterial extracellular solute‐binding protein. Glutathione reductase can purge superoxide radicals (O22−) and hydrogen peroxide (H2O2) damage in V. aestuarianus strain W‐40. The presence of two compete type I restriction‐modification systems was confirmed. A total of 42 insertion sequences (IS) elements and 16 IS elements were identified. Our results revealed a host of virulence factors that likely contribute to the pathogenicity of V. aestuarianus strain W‐40, including the virulence factor genes vacA, clpC, and bvgA, which are important for biofilm dispersion. Several bacitracin and tetracycline antibiotic resistance‐encoding genes and type VI secretion systems were also identified in the genome. The complete genome sequence will aid future studies of the pathogenesis of V. aestuarianus strain W‐40 and allow for new strategies to control disease to be developed.
Collapse
Affiliation(s)
- Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| |
Collapse
|
9
|
Zhang YH, Hu Y, Zhang Y, Hu LD, Kong X. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2255-2265. [PMID: 29241664 DOI: 10.1016/j.bbadis.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 02/08/2023]
Abstract
Hematopoiesis is a complicated process involving a series of biological sub-processes that lead to the formation of various blood components. A widely accepted model of early hematopoiesis proceeds from long-term hematopoietic stem cells (LT-HSCs) to multipotent progenitors (MPPs) and then to lineage-committed progenitors. However, the molecular mechanisms of early hematopoiesis have not been fully characterized. In this study, we applied a computational strategy to identify the gene expression signatures distinguishing three types of closely related hematopoietic cells collected in recent studies: (1) hematopoietic stem cell/multipotent progenitor cells; (2) LT-HSCs; and (3) hematopoietic progenitor cells. Each cell in these cell types was represented by its gene expression profile among a total number of 20,475 genes. The expression features were analyzed by a Monte-Carlo Feature Selection (MCFS) method, resulting in a feature list. Then, the incremental feature selection (IFS) and a support vector machine (SVM) optimized with a sequential minimum optimization (SMO) algorithm were employed to access the optimal classifier with the highest Matthews correlation coefficient (MCC) value of 0.889, in which 6698 features were used to represent cells. In addition, through an updated program of MCFS method, seventeen decision rules can be obtained, which can classify the three cell types with an overall accuracy of 0.812. Using a literature review, both the rules and the top features used for building the optimal classifier were confirmed to be commonly used or potential biological markers for distinguishing the three cell types of HSPCs. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu Hu
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yuchao Zhang
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Lan-Dian Hu
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Xiangyin Kong
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
10
|
Riccardo F, Réal A, Voena C, Chiarle R, Cavallo F, Barutello G. Maternal Immunization: New Perspectives on Its Application Against Non-Infectious Related Diseases in Newborns. Vaccines (Basel) 2017; 5:E20. [PMID: 28763018 PMCID: PMC5620551 DOI: 10.3390/vaccines5030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The continuous evolution in preventive medicine has anointed vaccination a versatile, human-health improving tool, which has led to a steady decline in deaths in the developing world. Maternal immunization represents an incisive step forward for the field of vaccination as it provides protection against various life-threatening diseases in pregnant women and their children. A number of studies to improve prevention rates and expand protection against the largest possible number of infections are still in progress. The complex unicity of the mother-infant interaction, both during and after pregnancy and which involves immune system cells and molecules, is an able partner in the success of maternal immunization, as intended thus far. Interestingly, new studies have shed light on the versatility of maternal immunization in protecting infants from non-infectious related diseases, such as allergy, asthma and congenital metabolic disorders. However, barely any attempt at applying maternal immunization to the prevention of childhood cancer has been made. The most promising study reported in this new field is a recent proof of concept on the efficacy of maternal immunization in protecting cancer-prone offspring against mammary tumor progression. New investigations into the possibility of exploiting maternal immunization to prevent the onset and/or progression of neuroblastoma, one of the most common childhood malignancies, are therefore justified. Maternal immunization is presented in a new guise in this review. Attention will be focused on its versatility and potential applications in preventing tumor progression in neuroblastoma-prone offspring.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Aline Réal
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| |
Collapse
|
11
|
Zhu W, Zhang XY, Marjani SL, Zhang J, Zhang W, Wu S, Pan X. Next-generation molecular diagnosis: single-cell sequencing from bench to bedside. Cell Mol Life Sci 2017; 74:869-880. [PMID: 27738745 PMCID: PMC11107533 DOI: 10.1007/s00018-016-2368-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
Abstract
Single-cell sequencing (SCS) is a fast-growing, exciting field in genomic medicine. It enables the high-resolution study of cellular heterogeneity, and reveals the molecular basis of complicated systems, which facilitates the identification of new biomarkers for diagnosis and for targeting therapies. It also directly promotes the next generation of genomic medicine because of its ultra-high resolution and sensitivity that allows for the non-invasive and early detection of abnormalities, such as aneuploidy, chromosomal translocation, and single-gene disorders. This review provides an overview of the current progress and prospects for the diagnostic applications of SCS, specifically in pre-implantation genetic diagnosis/screening, non-invasive prenatal diagnosis, and analysis of circulating tumor cells. These analyses will accelerate the early and precise control of germline- or somatic-mutation-based diseases, particularly single-gene disorders, chromosome abnormalities, and cancers.
Collapse
Affiliation(s)
- Wanjun Zhu
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA
- College of Veterinary Medicine, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Xiao-Yan Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, People's Republic of China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, 06050, USA
| | - Jialing Zhang
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Wengeng Zhang
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shixiu Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, People's Republic of China.
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Province Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Wang J, Song Y. Single cell sequencing: a distinct new field. Clin Transl Med 2017; 6:10. [PMID: 28220395 PMCID: PMC5318355 DOI: 10.1186/s40169-017-0139-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/11/2017] [Indexed: 12/12/2022] Open
Abstract
Single cell sequencing (SCS) has become a new approach to study biological heterogeneity. The advancement in technologies for single cell isolation, amplification of genome/transcriptome and next-generation sequencing enables SCS to reveal the inherent properties of a single cell from the large scale of the genome, transcriptome or epigenome at high resolution. Recently, SCS has been widely applied in various clinical and research fields, such as cancer biology and oncology, immunology, microbiology, neurobiology and prenatal diagnosis. In this review, we will discuss the development of SCS methods and focus on the latest clinical and research applications of SCS.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
13
|
Li DZ, Yang YD. Invasive prenatal diagnosis of fetal thalassemia. Best Pract Res Clin Obstet Gynaecol 2016; 39:41-52. [PMID: 27889305 DOI: 10.1016/j.bpobgyn.2016.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/22/2016] [Accepted: 10/14/2016] [Indexed: 01/30/2023]
Abstract
Thalassemia is the most common monogenic inherited disease worldwide, affecting individuals originating from many countries to various extents. As the disease requires long-term care, prevention of the homozygous state presents a substantial global disease burden. The comprehensively preventive programs involve carrier detections, molecular diagnostics, genetic counseling, and prenatal diagnosis. Invasive prenatal diagnosis refers to obtaining fetal material by chorionic villus sampling (CVS) at the first trimester, and by amniocentesis or cordocentesis at the second trimester. Molecular diagnosis, which includes multiple techniques that are aimed at the detection of mutations in the α- or β-globin genes, facilitates prenatal diagnosis and definitive diagnosis of the fetus. These are valuable procedures for couples at risk, so that they can be offered options to have healthy offspring. According to local practices and legislation, genetic counseling should accompany the invasive diagnostic procedures, DNA testing, and disclosure of the results. The most critical issue in any type of prenatal molecular testing is maternal cell contamination (MCC), especially when a fetus is found to inherit a particular mutation from the mother. The best practice is to perform MCC studies on all prenatal samples. The recent successful studies of fetal DNA in maternal plasma may allow future prenatal testing that is non-invasive for the fetus and result in significant reduction of invasive diagnostic procedures.
Collapse
Affiliation(s)
- Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children Medical Center Affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yan-Dong Yang
- Fetal Medicine Division, Guangzhou Overseas Chinese Hospital, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Christopoulou G, Papageorgiou EA, Patsalis PC, Velissariou V. Comparison of next generation sequencing-based and methylated DNA immunoprecipitation-based approaches for fetal aneuploidy non-invasive prenatal testing. World J Med Genet 2015; 5:23-27. [DOI: 10.5496/wjmg.v5.i2.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Over the past few years, many researchers have attempted to develop non-invasive prenatal testing methods in order to investigate the genetic status of the fetus. The aim is to avoid invasive procedures such as chorionic villus and amniotic fluid sampling, which result in a significant risk for pregnancy loss. The discovery of cell free fetal DNA circulating in the maternal blood has great potential for the development of non-invasive prenatal testing (NIPT) methodologies. Such strategies have been successfully applied for the determination of the fetal rhesus status and inherited monogenic disease but the field of fetal aneuploidy investigation seems to be more challenging. The main reason for this is that the maternal cell free DNA in the mother’s plasma is far more abundant, and because it is identical to half of the corresponding fetal DNA. Approaches developed are mainly based on next generation sequencing (NGS) technologies and epigenetic genetic modifications, such as fetal-maternal DNA differential methylation. At present, genetic services for non-invasive fetal aneuploidy detection are offered using NGS-based approaches but, for reasons that are presented herein, they still serve as screening tests which are not readily accessed by the majority of couples. Here we discuss the limitations of both strategies for NIPT and the future potential of the methods developed.
Collapse
|