1
|
Tian Z, Lian W, Xu L, Long Y, Tang L, Wang H. Robust evidence reveals the reliable rate of normal/balanced embryos for identifying reciprocal translocation and Robertsonian translocation carriers. ZYGOTE 2024; 32:58-65. [PMID: 38083872 DOI: 10.1017/s0967199423000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
We aimed to evaluate the reliable rate of normal/balanced embryos for reciprocal translocation and Robertsonian translocation carriers and to provide convincing evidence for clinical staff to conduct genetic counselling regarding common structural rearrangements to alleviate patient anxiety. The characteristics of 39,459 embryos that were sourced from unpublished data and literature were analyzed. The samples consisted of 17,536 embryo karyotypes that were not published and 21,923 embryo karyotypes obtained from the literature. Using the PubMed, Cochrane Library, Web of Science, and Embase databases, specific keywords were used to screen the literature for reciprocal translocation and Robertsonian translocation. The ratio of normal/balanced embryos in the overall data was calculated and analyzed, and we grouped the results according to gender to confirm if there were gender differences. We also divided the data into the cleavage stage and blastocyst stage according to the biopsy period to verify if there was a difference in the ratio of normal/balanced embryos. By combining the unpublished data and data derived from the literature, the average rates of normal/balanced embryos for reciprocal translocation and Robertsonian translocation carriers were observed to be 26.96% (7953/29,495) and 41.59% (4144/9964), respectively. Reciprocal translocation and Robertson translocation exhibited higher rates in male carriers than they did in female carriers (49.60% vs. 37.44%; 29.84% vs. 27.67%). Additionally, the data for both translocations exhibited differences in the normal/balanced embryo ratios between the cleavage and blastocyst stages of carriers for both Robertsonian translocation and reciprocal translocation (36.07% vs 43.43%; 24.88% vs 27.67%). The differences between the two location types were statistically significant (P < 0.05). The normal/balanced ratio of embryos in carriers of reciprocal and RobT was higher than the theoretical ratio, and the values ranged from 26.96% to 41.59%. Moreover, the male carriers possessed a higher number of embryos that were normal or balanced. The ratio of normal/balanced embryos in the blastocyst stage was higher than that in the cleavage stage. The results of this study provide a reliable suggestion for future clinic genetic consulting regarding the rate of normal/balanced embryos of reciprocal translocation and Robertsonian translocation carriers.
Collapse
Affiliation(s)
- Zhihua Tian
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Wenchang Lian
- Department of Medical Genetics, Yikon Genomics Company, Ltd, Jiangsu Suzhou215021, China
| | - Li Xu
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Yanxi Long
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Li Tang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Huawei Wang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| |
Collapse
|
2
|
Yamazaki A, Kuroda T, Kawasaki N, Kato K, Shimojima Yamamoto K, Iwasa T, Kuwahara A, Taniguchi Y, Takeshita T, Kita Y, Mikami M, Irahara M, Yamamoto T. Preimplantation genetic testing using comprehensive genomic copy number analysis is beneficial for balanced translocation carriers. J Hum Genet 2024; 69:41-45. [PMID: 37872345 DOI: 10.1038/s10038-023-01202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Balanced chromosomal translocation is one of chromosomal variations. Carriers of balanced chromosomal translocations have an increased risk of spontaneous miscarriage. To avoid the risk, preimplantation genetic testing (PGT) using comprehensive genomic copy number analysis has been developed. This study aimed to verify whether and how embryos from couples in which one partner is a balanced translocation carrier have a higher ratio of chromosomal abnormalities. A total of 894 biopsied trophectoderms (TEs) were obtained from 130 couples in which one partner was a balanced translocation carrier (Robertsonian translocation, reciprocal translocation, or intrachromosomal inversion) and grouped as PGT-SR. Conversely, 3269 TEs from 697 couples who experienced recurrent implantation failure or recurrent pregnancy loss were included in the PGT-A group. The transferable blastocyst ratio was significantly lower in the PGT-SR group, even when bias related to the sample number and patient age was corrected. Subgroup analysis of the PGT-SR group revealed that the transferable blastocyst ratio was higher in the Robertsonian translocation group. Because the PGT-SR group had a higher proportion of untransferable embryos than the PGT-A group, PGT using comprehensive genomic copy number analysis was more beneficial for balanced translocation carriers than for infertility patients without chromosomal translocations. The frequencies of de novo aneuploidies were further analyzed, and the frequency in the PGT-SR group was lower than that in the PGT-A group. Therefore, we could not confirm the existence of interchromosomal effects in this study.
Collapse
Affiliation(s)
- Aya Yamazaki
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | | | | | | | - Keiko Shimojima Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
- Clinic Cosmos, Kochi, 780-0072, Japan
| | - Yuka Taniguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical University, Tokyo, 113-8602, Japan
- Takeshita Ladies Clinic, Tokyo, 160-0017, Japan
| | - Yosuke Kita
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, 108-8345, Japan
| | - Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Kanagawa, 259-1143, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| |
Collapse
|
3
|
Gao FF, Chen L, Bo SP, Yao YX, Xu ZL, Ding QY, Zhang P, Lu SJ, Ren J. ChromInst: A single cell sequencing technique to accomplish pre-implantation comprehensive chromosomal screening overnight. PLoS One 2021; 16:e0251971. [PMID: 34015059 PMCID: PMC8136696 DOI: 10.1371/journal.pone.0251971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Next Generation Sequencing (NGS) is a powerful tool getting into the field of clinical examination. Its preliminary application in pre-implantation comprehensive chromosomal screening (PCCS) of assisted reproduction (test-tube baby) has shown encouraging outcomes that improves the success rate of in vitro fertilization. However, the conventional NGS library construction is time consuming. In addition with the whole genome amplification (WGA) procedure in prior, makes the single cell NGS assay hardly be accomplished within an adequately short turnover time in supporting fresh embryo implantation. In this work, we established a concise single cell sequencing protocol, ChromInst, in which the single cell WGA and NGS library construction were integrated into a two-step PCR procedure of ~ 2.5hours reaction time. We then validated the feasibility of ChromInst for overnight PCCS assay by examining 14 voluntary donated embryo biopsy samples in a single sequencing run of Miseq with merely 13M reads production. The good compatibility of ChromInst with the restriction of Illumina sequencing technique along with the good library yield uniformity resulted superior data usage efficiency and reads distribution evenness that ensures precisely distinguish of 6 normal embryos from 8 abnormal one with variable chromosomal aneuploidy. The superior succinctness and effectiveness of this protocol permits its utilization in other time limited single cell NGS applications.
Collapse
Affiliation(s)
- Fang-Fang Gao
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
| | - Li Chen
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, PR China
| | - Shi-Ping Bo
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
| | - Ya-Xin Yao
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
| | - Zhong-Li Xu
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
| | - Qing-Yu Ding
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
| | - Peng Zhang
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
| | - Si-Jia Lu
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
| | - Jun Ren
- Department of Research and Development, Yikon Genomics (Suzhou) Company Limited, Suzhou, Jiangsu, PR China
- * E-mail:
| |
Collapse
|
4
|
Boynukalin FK, Gultomruk M, Turgut NE, Rubio C, Rodrigo L, Yarkiner Z, Ecemis S, Karlikaya G, Findikli N, Bahceci M. The impact of patient, embryo, and translocation characteristics on the ploidy status of young couples undergoing preimplantation genetic testing for structural rearrangements (PGT-SR) by next generation sequencing (NGS). J Assist Reprod Genet 2021; 38:387-396. [PMID: 33398513 PMCID: PMC7884505 DOI: 10.1007/s10815-020-02054-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To evaluate the factors that affect the incidence of euploid balanced embryos and interchromosomal effect (ICE) in carriers of different structural rearrangements. METHODS This retrospective study includes 95 couples with reciprocal translocations (RecT) and 36 couples with Robertsonian translocations (RobT) undergoing Preimplantation Genetic Testing for Structural Rearrangements (PGT-SR) between March 2016 and July 2019. Next-generation sequencing (NGS) was the technique used coupled with trophectoderm (TE) biopsy. Only cases with females under 38 years were included. A total of 532 blastocysts were evaluated. RESULTS The euploidy rate was similar in RobT when compared with RecT carriers [57/156 (36.5%) vs. 112/376 (29.8%), p = 0.127]. The pure ICE rate was significantly higher in RobT carriers [48/156 (30.8%) vs. 53/376 (14.1%), p < 0.001] than it was in RecT carriers. Female age was the independent factor for the probability of obtaining a euploid embryo in RecT and RobT carriers, and increasing female age decreases the probability of obtaining a euploid embryo. In RecT carriers, no significant differences were observed in euploidy rates, pure ICE, or combined ICE according to the length of the translocated fragment and the chromosome group. However, total ICE was significantly lower when there was a breakpoint in the short chromosome arm together with a breakpoint in the long arm [(44/158 (27.8%) for pq or qp, 51/155 (32.9%) for pp and 30/63 (47.6%) for qq; p = 0.02]. CONCLUSION The incidence of euploid/balanced blastocysts was similar in both types of translocations. However, there was a significant increase in pure ICE in RobT compared to RecT carriers. In RecT carriers, the presence of the breakpoints in the long arm of the chromosomes involved in the rearrangement resulted in a higher total ICE.
Collapse
Affiliation(s)
| | - Meral Gultomruk
- Bahceci Health Group, Hakki Yeten cad. No: 11 Terrace Fulya, Fulya, Istanbul, Turkey
| | - Niyazi Emre Turgut
- Bahceci Health Group, Hakki Yeten cad. No: 11 Terrace Fulya, Fulya, Istanbul, Turkey
| | - Carmen Rubio
- IGENOMIX, Calle Narcís Monturiol Estarriol no. 11 Parcela B, Edificio Europark, Parque Tecnológico de Paterna, 46980, Paterna, Valencia, Spain
| | - Lorena Rodrigo
- IGENOMIX, Calle Narcís Monturiol Estarriol no. 11 Parcela B, Edificio Europark, Parque Tecnológico de Paterna, 46980, Paterna, Valencia, Spain
| | - Zalihe Yarkiner
- Department of Statistics, Cyprus Science University, Dr. Fazil Kucuk Cad., 99320, Ozankoy, Cyprus
| | - Selen Ecemis
- Bahceci Health Group, Hakki Yeten cad. No: 11 Terrace Fulya, Fulya, Istanbul, Turkey
| | - Guvenc Karlikaya
- Bahceci Health Group, Hakki Yeten cad. No: 11 Terrace Fulya, Fulya, Istanbul, Turkey
| | - Necati Findikli
- Bahceci Health Group, Hakki Yeten cad. No: 11 Terrace Fulya, Fulya, Istanbul, Turkey
| | - Mustafa Bahceci
- Bahceci Health Group, Hakki Yeten cad. No: 11 Terrace Fulya, Fulya, Istanbul, Turkey
| |
Collapse
|
5
|
In vitro fertilization outcomes after preimplantation genetic testing for chromosomal structural rearrangements comparing fluorescence in-situ hybridization, microarray comparative genomic hybridization, and next-generation sequencing. F S Rep 2020; 1:249-256. [PMID: 34223252 PMCID: PMC8244371 DOI: 10.1016/j.xfre.2020.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Objective To compare in vitro fertilization (IVF) outcomes for preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) using various testing platforms. Design Retrospective cohort. Setting Large academic IVF center. Patient(s) Fifty-one balanced translocation carriers undergoing IVF with PGT-SR who completed a total of 91 cycles, including 31 fluorescence in-situ hybridization (FISH), 24 microarray comparative genomic hybridization (aCGH), and 36 next-generation sequencing (NGS) testing cycles. Intervention(s) PGT-SR. Main Outcome Measure(s) Primary outcome of live-birth rate and secondary outcomes including implantation rate, clinical loss rate, and percentages of normal or balanced, unbalanced, and aneuploid embryos detected. Result(s) There was no statistically significant difference in LBR, though there was a tendency toward a higher LBR for NGS testing (14 of 19, 73.7%) compared with FISH (8 of 18, 44.4%) and aCGH (10 of 20, 50.0%). The implantation rate was statistically significantly higher for NGS (16 of 20, 80.0%) compared with FISH (11 of 25, 44.0%) and aCGH (16 of 30, 53.3%). There was no statistically significant difference in clinical pregnancy losses. There was a lower percentage of normal or balanced embryos with FISH (12.5%) compared with aCGH (23.7%) and with NGS (20.7%). Conclusion(s) This is the first report of PGT-SR outcomes for translocation carriers directly comparing PGT-SR using FISH, aCGH, and NGS. Our findings suggest an improvement in pregnancy outcomes parallel to the advancement in technology and are reassuring for continued use of NGS for this population.
Collapse
|
6
|
García-Pascual CM, Navarro-Sánchez L, Navarro R, Martínez L, Jiménez J, Rodrigo L, Simón C, Rubio C. Optimized NGS Approach for Detection of Aneuploidies and Mosaicism in PGT-A and Imbalances in PGT-SR. Genes (Basel) 2020; 11:genes11070724. [PMID: 32610655 PMCID: PMC7397276 DOI: 10.3390/genes11070724] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
The detection of chromosomal aneuploidies and mosaicism degree in preimplantation embryos may be essential for achieving pregnancy. The aim of this study was to determine the robustness of diagnosing homogenous and mosaic aneuploidies using a validated algorithm and the minimal resolution for de novo and inherited deletions and duplications (Del/Dup). Two workflows were developed and validated: (a,b) preimplantation genetic testing for uniform whole and segmental aneuploidies, plus mixtures of euploid/aneuploid genomic DNA to develop an algorithm for detecting mosaicism; and (c) preimplantation genetic testing for structural rearrangements for detecting Del/Dup ≥ 6 Mb. Next-generation sequencing (NGS) was performed with automatic library preparation and multiplexing up to 24-96 samples. Specificity and sensitivity for PGT-A were both 100% for whole chromosomes and segmentals. The thresholds stablished for mosaicism were: euploid embryos (<30% aneuploidy), low mosaic (from 30% to <50%), high mosaic (50-70%) or aneuploid (>70%). In the PGT-SR protocol, changes were made to increase the detection level to ≥6 Mb. This is the first study reporting an accurate assessment of semiautomated-NGS protocols using Reproseq on pools of cells. Both protocols allow for the analysis of homogeneous and segmental aneuploidies, different degrees of mosaicism, and small Del/Dup with high sensitivity and specificity.
Collapse
Affiliation(s)
- Carmen M. García-Pascual
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
- Igenomix Foundation, 46980 Valencia, Spain
- Correspondence: ; Tel.: +34-96-390-53-10
| | - Luis Navarro-Sánchez
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
| | - Roser Navarro
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
| | - Lucía Martínez
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
| | - Jorge Jiménez
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
| | - Lorena Rodrigo
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
| | - Carlos Simón
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
- School of Medicine, University of Valencia/INCLIVA, Valencia 46106, Spain
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carmen Rubio
- R&D Department, Igenomix, 46980 Valencia, Spain; (L.N.-S.); (R.N.); (L.M.); (J.J.); (L.R.); (C.S.); (C.R.)
- Igenomix Foundation, 46980 Valencia, Spain
| |
Collapse
|
7
|
Zhang L, Wei D, Zhu Y, Jiang W, Xia M, Li J, Yan J, Chen ZJ. Interaction of acrocentric chromosome involved in translocation and sex of the carrier influences the proportion of alternate segregation in autosomal reciprocal translocations. Hum Reprod 2020; 34:380-387. [PMID: 30576528 DOI: 10.1093/humrep/dey367] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/12/2018] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Are meiotic segregation patterns of reciprocal translocations affected by the combined effect of chromosome type and carrier's sex? SUMMARY ANSWER Interaction of an acrocentric chromosome (Acr-ch) involved in the translocation and sex of the carrier influences the proportion of alternate segregation for normal or balanced chromosome contents during meiotic segregation in autosomal reciprocal translocations. WHAT IS KNOWN ALREADY Carriers of reciprocal translocations are at a significantly increased risk of fertility problems due to the generation of unbalanced gametes in meiotic segregation of a quadrivalent. Previous studies have reported that meiotic segregation patterns of a quadrivalent can be affected by factors such as a carrier's sex and age and the chromosome type. However, the reported proportion of alternate segregation does not differ significantly, except in one study, and whether combined effects between these factors exist is unclear. STUDY DESIGN, SIZE, DURATION A retrospective study of array comparative genomic hybridization (aCGH) outcome data from patients with autosomal reciprocal translocations was conducted to analyse meiotic segregation patterns and blastocyst euploidy rates. We enroled 473 couples whose embryos were tested between January 2013 and September 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS Meiotic segregation patterns of 2101 blastocysts from 243 female carriers, including 76 cases with translocations involving Acr-ch, and 230 male carriers, including 88 cases with translocations involving Acr-ch, were analysed according to chromosome type, carrier's sex and age. MAIN RESULTS AND THE ROLE OF CHANCE In cases with translocations involving the Acr-ch subgroup, the proportion of alternate segregation (53.9 vs 33.4%, P < 0.0001) was significantly higher in male carriers than in female carriers, with the proportion of 3:1 segregation (6.8 vs 16.3%, P < 0.0001) being significantly lower. The proportions of alternate segregation were similar between sexes in cases with translocations not involving the Acr-ch subgroup. Meanwhile, in the female carrier subgroup, the proportion of alternate segregation (33.4 vs 45.2%, P < 0.001) was significantly lower and the proportion of 3:1 segregation (16.3 vs 8.2%, P < 0.001) was significantly higher in cases with translocations involving Acr-ch than in those not. In the male carrier subgroup, the proportion of alternate segregation (53.9 vs 46.9%, P = 0.031) was higher and the proportion of adjacent-1 segregation (27.1 vs 37.3%, P < 0.001) was significantly lower in cases with translocations involving Acr-ch than in those not. Carrier's age did not affect the meiotic segregation patterns. However the euploidy rates were significantly lower in couples with advanced compared to young maternal age respectively. LIMITATIONS, REASONS FOR CAUTION Mosaic embryos were not identified using aCGH in this study. Patients with complex chromosome rearrangements and translocations involving sex chromosomes were excluded. Interchromosomal effect was not analysed. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study provide detailed information for genetic counselling of couples with autosomal reciprocal translocations on their chances of producing euploid gametes. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Key Research and Development Program of China (2016YFC1000202); the National Natural Science Foundation of China (81671522); the Natural Science Foundation of Shandong Province in China (ZR2016HP09); and the Innovative Foundation of Reproductive Hospital Affiliated to Shandong University (20171114, 20171111). No competing interests are declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Yueting Zhu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Wenjie Jiang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Mingdi Xia
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Jing Li
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, 157 Jingliu Road, Jinan, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, 845 Lingshan Road, Shanghai, China
| |
Collapse
|
8
|
Toft CLF, Ingerslev HJ, Kesmodel US, Diemer T, Degn B, Ernst A, Okkels H, Kjartansdóttir KR, Pedersen IS. A systematic review on concurrent aneuploidy screening and preimplantation genetic testing for hereditary disorders: What is the prevalence of aneuploidy and is there a clinical effect from aneuploidy screening? Acta Obstet Gynecol Scand 2020; 99:696-706. [PMID: 32039470 DOI: 10.1111/aogs.13823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In assisted reproductive technology, aneuploidy is considered a primary cause of failed embryo implantation. This has led to the implementation of preimplantation genetic testing for aneuploidy in some clinics. The prevalence of aneuploidy and the use of aneuploidy screening during preimplantation genetic testing for inherited disorders has not previously been reviewed. Here, we systematically review the literature to investigate the prevalence of aneuploidy in blastocysts derived from patients carrying or affected by an inherited disorder, and whether screening for aneuploidy improves clinical outcomes. MATERIAL AND METHODS PubMed and Embase were searched for articles describing preimplantation genetic testing for monogenic disorders and/or structural rearrangements in combination with preimplantation genetic testing for aneuploidy. Original articles reporting aneuploidy rates at the blastocyst stage and/or clinical outcomes (positive human chorionic gonadotropin, gestational sacs/implantation rate, fetal heartbeat/clinical pregnancy, ongoing pregnancy, miscarriage, or live birth/delivery rate on a per transfer basis) were included. Case studies were excluded. RESULTS Of the 26 identified studies, none were randomized controlled trials, three were historical cohort studies with a reference group not receiving aneuploidy screening, and the remaining were case series. In weighted analysis, 34.1% of 7749 blastocysts were aneuploid. Screening for aneuploidy reduced the proportion of embryos suitable for transfer, thereby increasing the risk of experiencing a cycle without transferable embryos. In pooled analysis the percentage of embryos suitable for transfer was reduced from 57.5% to 37.2% following screening for aneuploidy. Among historical cohort studies, one reported significantly improved pregnancy and birth rates but did not control for confounding, one did not report any statistically significant difference between groups, and one properly designed study concluded that preimplantation genetic testing for aneuploidy enhanced the chance of achieving a pregnancy while simultaneously reducing the chance of miscarriage following single embryo transfer. CONCLUSIONS On average, aneuploidy is detected in 34% of embryos when performing a single blastocyst biopsy derived from patients carrying or affected by an inherited disorder. Accordingly, when screening for aneuploidy, the risk of experiencing a cycle with no transferable embryos increases. Current available data on the clinical effect of preimplantation genetic testing for aneuploidy performed concurrently with preimplantation genetic testing for inherited disorders are sparse, rendering the clinical effect from preimplantation genetic testing for aneuploidy difficult to access.
Collapse
Affiliation(s)
- Christian Liebst Frisk Toft
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Ulrik Schiøler Kesmodel
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Fertility Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Tue Diemer
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Birte Degn
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Anja Ernst
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Okkels
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Inge Søkilde Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Rechitsky S, Kuliev A, San Ramon G, Tur-Kaspa I, Wang Y, Wang W, Wu X, Wang L, Leigh D, Cram DS. Single-Molecule Sequencing: A New Approach for Preimplantation Testing and Noninvasive Prenatal Diagnosis Confirmation of Fetal Genotype. J Mol Diagn 2019; 22:220-227. [PMID: 31751677 DOI: 10.1016/j.jmoldx.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/11/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022] Open
Abstract
We investigated the potential of next-generation sequencing (NGS) as an alternative method for preimplantation genetic testing of monogenic disease (PGT-M) with human leukocyte antigen (HLA) matching and for noninvasive prenatal diagnosis follow-up. The case involved parents who were carriers of the Fanconi anemia complementation group G (FANCG) 260delG mutation. After clinical PGT using conventional short tandem repeat and mutation analysis, two euploid disease-free embryos were transferred, resulting in a twin pregnancy. Using the original embryo whole genome amplification products from 10 embryos, NGS confirmed the genotypes of the eight nontransferred embryos for both mutation status and HLA combination. NGS also confirmed that the two transferred embryos, which resulted in a twin pregnancy, were euploid, Fanconi disease free, and HLA matched to their sick sibling. At 15 weeks' gestation, noninvasive prenatal diagnosis of the maternal cell-free DNA determined fetal fractions of 14% and 6.6% for twins 1 and 2, respectively. The maternal plasma FANCG 260delG mutation ratio was measured at 46.2%, consistent with the presence of a carrier fetus and a normal fetus. These findings provide proof of concept that NGS has clinical utility as a safe and effective PGT-M method for embryo genotyping as well as more complex direct HLA matching. In addition, NGS can be used to confirm the original PGT-M and HLA matching embryo results in early pregnancy without the need for invasive prenatal diagnosis.
Collapse
Affiliation(s)
| | - Anver Kuliev
- Reproductive Genetic Innovations, Chicago, Illinois
| | | | | | - Yin Wang
- Research and Development Department, Berry Genomics Corporation, Beijing, People's Republic of China
| | - Wenjie Wang
- Women Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, People's Republic of China
| | - Xueqing Wu
- Women Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, People's Republic of China
| | - Li Wang
- IVF Center, First Hospital of Kunming, Kunming, People's Republic of China
| | - Don Leigh
- IVF Center, First Hospital of Kunming, Kunming, People's Republic of China
| | - David S Cram
- Research and Development Department, Berry Genomics Corporation, Beijing, People's Republic of China; Women Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, People's Republic of China; IVF Center, First Hospital of Kunming, Kunming, People's Republic of China.
| |
Collapse
|
10
|
Interchromosomal effect in carriers of translocations and inversions assessed by preimplantation genetic testing for structural rearrangements (PGT-SR). J Assist Reprod Genet 2019; 36:2547-2555. [PMID: 31696386 DOI: 10.1007/s10815-019-01593-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Balanced carriers of structural rearrangements have an increased risk of unbalanced embryos mainly due to the production of unbalanced gametes during meiosis. Aneuploidy for other chromosomes not involved in the rearrangements has also been described. The purpose of this work is to know if the incidence of unbalanced embryos, interchromosomal effect (ICE) and clinical outcomes differ in carriers of different structural rearrangements. METHODS Cohort retrospective study including 359 preimplantation genetic testing cycles for structural rearrangements from 304 couples was performed. Comparative genomic hybridisation arrays were used for chromosomal analysis. The results were stratified and compared according to female age and carrier sex. The impact of different cytogenetic features of chromosomal rearrangements was evaluated. RESULTS In carriers of translocations, we observed a higher percentage of abnormal embryos from day 3 biopsies compared with day 5/6 biopsies and for reciprocal translocations compared with other rearrangements. We observed a high percentage of embryos with aneuploidies for chromosomes not involved in the rearrangement that could be attributed to total ICE (aneuploid balanced and unbalanced embryos). No significant differences were observed in these percentages between types of rearrangements. Pure ICE (aneuploid balanced embyos) was independent of female age only for Robertsonian translocations, and significantly increased in day 3 biopsies for all types of abnormalities. Furthermore, total ICE for carriers of Robertsonian translocations and biopsy on day 3 was independent of female age too. High ongoing pregnancy rates were observed for all studied groups, with higher pregnancy rate for male carriers. CONCLUSION We observed a higher percentage of abnormal embryos for reciprocal translocations. No significant differences for total ICE was found among the different types of rearrangements, with higher pure ICE only for Robertsonian translocations. There was a sex effect for clinical outcome for carriers of translocations, with higher pregnancy rate for male carriers. The higher incidence of unbalanced and aneuploid embryos should be considered for reproductive counselling in carriers of structural rearrangements.
Collapse
|
11
|
Escribà MJ, Vendrell X, Peinado V. Segmental aneuploidy in human blastocysts: a qualitative and quantitative overview. Reprod Biol Endocrinol 2019; 17:76. [PMID: 31526391 PMCID: PMC6745804 DOI: 10.1186/s12958-019-0515-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microarray-based and next generation sequencing (NGS) technologies have revealed that segmental aneuploidy is frequently present in human oocytes, cleavage-stage embryos and blastocysts. However, very little research has analyzed the type, size, chromosomal distribution and topography of the chromosomal segments at the different stages of development. METHODS This is a retrospective study of 822 PGT-A (preimplantation genetic test for aneuploidies) performed on trophectoderm samples from 3565 blastocysts biopsied between January 2016 and April 2017. The cycles in question had been initiated for varying clinical indications. Samples were analyzed by next generation sequencing-based technology. Segmental aneuploidies were evaluated when fragment size was > 5 Mb. Blastocysts presenting a single segmental aneuploidy (SSA), without any additional whole-chromosome gain/loss, were statistically analyzed for incidence, type, size and chromosomal emplacement. Segment sizes relative to the whole chromosome or arm (chromosome- and arm-ratios) were also studied. RESULTS 8.4% (299/3565) of blastocysts exhibited segmental aneuploidy for one or more chromosomes, some of which were associated with whole-chromosome aneuploidy while others were not. Nearly half of them (4.5%: 159/3565 of blastocysts) exhibited pure-SSA, meaning that a single chromosome was affected by a SSA. Segments were more frequent in medium-sized metacentric or submetacentric chromosomes and particularly in q-chrmosome arms, variables that were related to trophectoderm quality. SSA size was related to a greater extent to chromosome number and the arm affected than it was to SSA type. In absolute values (Mb), SSA size was larger in large chromosomes. However, the SSA:chromosome ratio was constant across all chromosomes and never exceeded 50% of the chromosome. CONCLUSIONS SSA frequency is chromosome- and topographically dependent, and its incidence is not related to clinical or embryological factors, but rather to trophectoderm quality. SSA might be originated by chromosome instability in response to chromothripsis, bias introduced by the biopsy and/or iatrogenic effects. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
| | - Xavier Vendrell
- Reproductive Genetics Unit, Sistemas Genómicos, Parque Tecnológico Paterna, 46980, Valencia, Spain
| | - Vanessa Peinado
- Igenomix, Parque Tecnológico Paterna, 46980, Valencia, Spain
| |
Collapse
|
12
|
Cai Y, Ding M, Lin F, Diao Z, Zhang N, Sun H, Zhou J. Evaluation of preimplantation genetic testing based on next-generation sequencing for balanced reciprocal translocation carriers. Reprod Biomed Online 2019; 38:669-675. [PMID: 30885668 DOI: 10.1016/j.rbmo.2018.12.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
RESEARCH QUESTION Can next-generation sequencing (NGS) based on copy number variation sequencing (CNV-Seq) identify normal/balanced embryos in balanced reciprocal translocation carriers and what are their reproductive outcomes? DESIGN One hundred couples with balanced reciprocal translocation who underwent a total of 134 preimplantation genetic testing (PGT) cycles between January 2015 and October 2017 were evaluated. Trophectoderm cells of blastocysts were biopsied for CNV-Seq-based NGS. All the balanced/normal blastocysts were vitrified and cryopreserved. Single balanced/normal blastocysts were warmed and transferred in the subsequent frozen embryo transfer (FET) cycle. RESULTS During the study period, 400 blastocysts were analysed by NGS-PGT, of which 109 (27.25%) were balanced and euploid. A total of 52 blastocysts were transferred in the FET cycle. Clinical pregnancy was confirmed in 34 women (65.38%), with a miscarriage rate of 2.94%; 26 healthy term babies were born, including 24 singletons and one set of twins, while eight couples had ongoing pregnancies. Amniocentesis revealed a fetal chromosome status that was consistent with the NGS-PGT results. Female carriers had a significantly higher blastocyst rate than did the male carriers (37.01% versus 31.27%, P = 0.04). The transferable blastocyst rate was higher in couples treated with gonadotrophin-releasing hormone (GnRH) antagonist than in those treated with GnRH agonist (38.20% versus 24.37%, P = 0.01). However, neither carrier sex nor ovarian stimulation protocol influenced the clinical pregnancy rate. CONCLUSIONS CNV-Seq-based NGS is an efficient and reliable PGT method for balanced reciprocal translocation.
Collapse
Affiliation(s)
- Yunni Cai
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu 210008, China
| | - Min Ding
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu 210008, China
| | - Fei Lin
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital to Nanjing University Medical School, Nanjing Jiangsu 210008, China
| | - Zhenyu Diao
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital to Nanjing University Medical School, Nanjing Jiangsu 210008, China
| | - Ningyuan Zhang
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital to Nanjing University Medical School, Nanjing Jiangsu 210008, China
| | - Haixiang Sun
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital to Nanjing University Medical School, Nanjing Jiangsu 210008, China
| | - Jianjun Zhou
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu 210008, China; Reproductive Medicine Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital to Nanjing University Medical School, Nanjing Jiangsu 210008, China.
| |
Collapse
|
13
|
Cuman C, Beyer CE, Brodie D, Fullston T, Lin JI, Willats E, Zander-Fox D, Mullen J. Defining the limits of detection for chromosome rearrangements in the preimplantation embryo using next generation sequencing. Hum Reprod 2018; 33:1566-1576. [DOI: 10.1093/humrep/dey227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- C Cuman
- Monash IVF, 1/152 Clayton Rd, Clayton, Victoria, Australia
| | - C E Beyer
- Monash IVF, 1/152 Clayton Rd, Clayton, Victoria, Australia
| | - D Brodie
- Monash IVF, 1/152 Clayton Rd, Clayton, Victoria, Australia
| | - T Fullston
- Repromed, 180 Fullarton Road, Dulwich, South Australia, Australia
| | - J I Lin
- Monash IVF, 1/152 Clayton Rd, Clayton, Victoria, Australia
| | - E Willats
- Monash IVF, 1/152 Clayton Rd, Clayton, Victoria, Australia
| | - D Zander-Fox
- Repromed, 180 Fullarton Road, Dulwich, South Australia, Australia
| | - J Mullen
- Monash IVF, 1/152 Clayton Rd, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Aneuploidy is a leading cause of pregnancy failure. Although initial attempts to perform preimplantation genetic screening did not improve outcomes, validated techniques were developed to safely and effectively increase pregnancy rates. Still, many embryos designated as euploid do not implant. Current approaches are being refined to provide additional biologic insight into why this is the case. At present, the diagnosis and clinical relevance of segmental aneuploidy and mosaicism are amongst the more heavily investigated. RECENT FINDINGS Class I data have proven the safety of trophectoderm biopsy and validation studies have shown single nucleotide polymorphism array and quantitative PCR can accurately detect whole chromosome aneuploidy. Similar studies to validate next generation sequencing are underway. Although randomized control trials have demonstrated the clinical utility of preimplantation genetic screening, recent data on the impact of mosaicism and segmental aneuploidy require clarification. SUMMARY Several well powered randomized control trials have shown preimplantation genetic screening improves implantation rate. Plausible explanations for euploid failures include undetected mosaicism and segmental aneuploidy. However, the true incidence and dispersion of mosaicism within the embryo is unknown. Likewise, the resolution of detection and clinical significance of segmental aneuploidy is unclear. Further research to validate proposed detection algorithms and class I data to determine if detection impacts outcomes is needed.
Collapse
|
15
|
Prediction of a rare chromosomal aberration simultaneously with next generation sequencing-based comprehensive chromosome screening in human preimplantation embryos for recurrent pregnancy loss. J Assist Reprod Genet 2017; 35:171-176. [PMID: 28965243 DOI: 10.1007/s10815-017-1044-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/07/2017] [Indexed: 11/27/2022] Open
Abstract
Preimplantation genetic testing has been used widely in recent years as a part of assisted reproductive technology (ART) owing to the breakthrough development of deoxyribonucleic acid (DNA) sequencing. With the advancement of technology and increased resolution of next generation sequencing (NGS), extensive comprehensive chromosome screening along with small clinically significant deletions and duplications can possibly be performed simultaneously. Here, we present a case of rare chromosomal aberrations: 46,XY,dup(15)(q11.2q13),t(16;18)(q23;p11.2), which resulted in a normally developed adult but abnormal gametes leading to recurrent pregnancy loss (RPL). To our best knowledge, this is the first report of t(16;18) translocation with such a small exchanged segment detected by NGS platform of MiSeq system in simultaneous 24-chromosome aneuploidy screening.
Collapse
|
16
|
Treff NR, Zimmerman RS. Advances in Preimplantation Genetic Testing for Monogenic Disease and Aneuploidy. Annu Rev Genomics Hum Genet 2017; 18:189-200. [DOI: 10.1146/annurev-genom-091416-035508] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathan R. Treff
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey 07920
| | | |
Collapse
|
17
|
Preferential selection and transfer of euploid noncarrier embryos in preimplantation genetic diagnosis cycles for reciprocal translocations. Fertil Steril 2017; 108:620-627.e4. [PMID: 28863935 DOI: 10.1016/j.fertnstert.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To develop and validate a new strategy to distinguish between balanced/euploid carrier and noncarrier embryos in preimplantation genetic diagnosis (PGD) cycles for reciprocal translocations and to successfully achieve a live birth after selective transfer of a noncarrier embryo. DESIGN Retrospective and prospective study. SETTING In vitro fertilization (IVF) units. PATIENT(S) Eleven patients undergoing mate pair sequencing for identification of translocation breakpoints, followed by clinical PGD cycles. INTERVENTION(S) Embryo biopsy with 24-chromosome testing to determine carrier status of balanced/euploid embryos. MAIN OUTCOME MEASURE(S) Definition of translocation breakpoints and polymerase chain reaction (PCR) diagnostic primers, correct diagnosis of euploid embryos for carrier status, and a live birth with a normal karyotype after transfer of a noncarrier embryo. RESULT(S) In 9 of 11 patients (82%), translocation breakpoints were successfully identified. In four patients with a term PGD pregnancy established with a balanced/euploid embryo of unknown carrier status, the correct carrier status was retrospectively determined, matching with the cytogenetic karyotype of the resulting newborns. In a prospective PGD cycle undertaken by a patient with a 46,XY,t(7;14)(q22;q24.3) translocation, the four balanced/euploid embryos identified comprised three carriers and one noncarrier. Transfer of the noncarrier embryo resulted in birth of a healthy girl who was subsequently confirmed with a normal 46,XX karyotype. CONCLUSION(S) The combination of mate pair sequencing and PCR breakpoint analysis of balanced reciprocal translocation derivatives is a novel, reliable, and accurate strategy for distinguishing between carrier and noncarrier balanced/euploid embryos. The method has potential application in clinical PGD cycles for patients with reciprocal translocations or other structural rearrangements.
Collapse
|
18
|
Abstract
Preimplantation genetic diagnosis was first successfully performed in 1989 as an alternative to prenatal diagnosis for couples at risk of transmitting a genetic or chromosomal abnormality, such as cystic fibrosis, to their child. From embryos generated in vitro, biopsied cells are genetically tested. From the mid-1990s, this technology has been employed as an embryo selection tool for patients undergoing in vitro fertilisation, screening as many chromosomes as possible, in the hope that selecting chromosomally normal embryos will lead to higher implantation and decreased miscarriage rates. This procedure, preimplantation genetic screening, was initially performed using fluorescent in situ hybridisation, but 11 randomised controlled trials of screening using this technique showed no improvement in in vitro fertilisation delivery rates. Progress in genetic testing has led to the introduction of array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing for preimplantation genetic screening, and three small randomised controlled trials of preimplantation genetic screening using these new techniques indicate a modest benefit. Other trials are still in progress but, regardless of their results, preimplantation genetic screening is now being offered globally. In the near future, it is likely that sequencing will be used to screen the full genetic code of the embryo.
Collapse
Affiliation(s)
- Joyce C Harper
- Joyce Harper, Embryology, IVF and Reproductive Genetics Group, Institute for Women's Health, University College London, London, UK
| |
Collapse
|
19
|
Evaluation of comprehensive chromosome screening platforms for the detection of mosaic segmental aneuploidy. J Assist Reprod Genet 2017; 34:975-981. [PMID: 28577183 PMCID: PMC5533675 DOI: 10.1007/s10815-017-0924-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/11/2017] [Indexed: 11/01/2022] Open
Abstract
PURPOSE A subset of preimplantation embryos identified as euploid may in fact possess both whole and sub-chromosomal mosaicism, raising concerns regarding the predictive value of current comprehensive chromosome screening (CCS) methods utilizing a single biopsy. Current CCS methods may be capable of detecting sub-chromosomal mosaicism in a trophectoderm biopsy by examining intermediate levels of segmental aneuploidy within a biopsy. This study evaluates the sensitivity and specificity of segmental aneuploidy detection by three commercially available CCS platforms utilizing a cell line mixture model of segmental mosaicism in a six-cell trophectoderm biopsy. METHODS Two cell lines with known karyotypes were obtained and mixed together at specific ratios of six total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). A female cell line containing a 16.2 Mb deletion on chromosome 5 and a male cell line containing a 25.5 Mb deletion on chromosome 4 were used to create mixtures at each level. Six replicates of each mixture were prepared, randomized, and blinded for analysis by one of the three CCS platforms (SNP-array, VeriSeq NGS, or NexCCS). Sensitivity and specificity of segmental aneuploidy at each level of mosaicism was determined and compared between each platform. Additionally, an alternative VeriSeq NGS analysis method utilizing previously published criteria was evaluated. RESULTS Examination of the default settings of each platform revealed that the sensitivity was significantly different between NexCCS and SNP up to 50% mosaicism, custom VeriSeq, and SNP-array up to 66% mosaicism, and between NexCCS and custom VeriSeq up to 50% mosaicism. However, no statistical difference was observed in mixtures with >50% mosaicism with any platform. No comparison was made between default VeriSeq, as it does not report segmental imbalances. Furthermore, while the use of previously published criteria for VeriSeq NGS significantly increased sensitivity at low levels of mosaicism, a significant decrease in specificity was observed (66% false positive prediction of segmental aneuploidy). CONCLUSION These results demonstrate the potential of NGS-based detection methods to detect segmental mosaicism within a biopsy. However, these data also demonstrate that a balance between sensitivity and specificity should be more carefully considered. These results emphasize the importance of vigorous preclinical evaluation of new testing criteria prior to clinical implementation providing a point of departure for further algorithm development and improved detection of mosaicism within preimplantation embryos.
Collapse
|
20
|
Sermon K. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy. Expert Rev Mol Diagn 2016; 17:71-82. [PMID: 27855520 DOI: 10.1080/14737159.2017.1262261] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.
Collapse
Affiliation(s)
- Karen Sermon
- a Research Group Reproduction and Genetics , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
21
|
Number of blastocysts biopsied as a predictive indicator to obtain at least one normal/balanced embryo following preimplantation genetic diagnosis with single nucleotide polymorphism microarray in translocation cases. J Assist Reprod Genet 2016; 34:51-59. [PMID: 27822654 PMCID: PMC5330983 DOI: 10.1007/s10815-016-0831-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/23/2016] [Indexed: 11/12/2022] Open
Abstract
Purpose The aim of this study is to investigate the minimum number of blastocysts for biopsy to increase the likelihood of obtaining at least one normal/balanced embryo in preimplantation genetic diagnosis (PGD) for translocation carriers. Methods This blinded retrospective study included 55 PGD cycles for Robertsonian translocation (RT) and 181 cycles for reciprocal translocation (rcp) to indicate when only one of the couples carried a translocation. Single-nucleotide polymorphism microarray after trophectoderm biopsy was performed. Results Reliable results were obtained for 355/379 (93.7 %) biopsied blastocysts in RT group and 986/1053 (93.6 %) in rcp group. Mean numbers of biopsied embryos per patient, normal/balanced embryos per patient, and mean normal/balanced embryo rate per patient were 7.4, 3.1, and 40.7 % in RT group and 8.0, 2.1, and 27.3 %, respectively, in rcp group. In a regression model, three factors significantly affected the number of genetically transferrable embryos: number of biopsied embryos (P = 0.001), basal FSH level (P = 0.040), and maternal age (P = 0.027). ROC analysis with a cutoff of 1.5 was calculated for the number of biopsied embryos required to obtain at least one normal/balanced embryo for RT carriers. For rcp carriers, the cutoff was 3.5. The clinical pregnancy rate per embryo transfer was 44.2 and 42.6 % in RT and rcp groups (P = 0.836). Conclusions The minimum numbers of blastocysts to obtain at least one normal/balanced embryo for RT and rcp were 2 and 4 under the conditions of female age < 37 years with a basal FSH level < 11.4 IU/L.
Collapse
|
22
|
Treff NR, Franasiak JM. Detection of segmental aneuploidy and mosaicism in the human preimplantation embryo: technical considerations and limitations. Fertil Steril 2016; 107:27-31. [PMID: 27816233 DOI: 10.1016/j.fertnstert.2016.09.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/12/2023]
Abstract
Whole-chromosome aneuploidy screening has become a common practice to improve outcomes and decrease embryonic transfer order in patients undergoing treatment for infertility through in vitro fertilization. Despite implementation of this powerful technology, a significant percentage of euploid embryos fail to result in successful deliveries. As technology has evolved, detection of subchromosomal imbalances and embryonic mosaicism has become possible, and these serve as potential explanations for euploid embryo transfer failures. Cases involving a parent with a balanced translocation provide a unique opportunity to characterize the capabilities and limitations of detecting segmental imbalances with a variety chromosome screening platforms. Adaptation of these methods to de novo imbalances now represent an ongoing challenge in the field of preimplantation genetic screening as additional factors including mosaicism, clinical predictive value, and distinguishing true imbalances from technical artifacts must be more carefully considered.
Collapse
Affiliation(s)
- Nathan R Treff
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey; Thomas Jefferson University, Philadelphia, Pennsylvania.
| | | |
Collapse
|
23
|
Translocations, inversions and other chromosome rearrangements. Fertil Steril 2016; 107:19-26. [PMID: 27793378 DOI: 10.1016/j.fertnstert.2016.10.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 01/14/2023]
Abstract
Chromosomal rearrangements have long been known to significantly impact fertility and miscarriage risk. Advancements in molecular diagnostics are challenging contemporary clinicians and patients in accurately characterizing the reproductive risk of a given abnormality. Initial attempts at preimplantation genetic diagnosis were limited by the inability to simultaneously evaluate aneuploidy and missed up to 70% of aneuploidy in chromosomes unrelated to the rearrangement. Contemporary platforms are more accurate and less susceptible to technical errors. These techniques also offer the ability to improve outcomes through diagnosis of uniparental disomy and may soon be able to consistently distinguish between normal and balanced translocation karyotypes. Although an accurate projection of the anticipated number of unbalanced embryos is not possible at present, confirmation of normal/balanced status results in high pregnancy rates (PRs) and diagnostic accuracy.
Collapse
|
24
|
Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, Spinella F, Fiorentino F, Varricchio MT, Greco E. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod 2016; 31:2245-54. [PMID: 27591227 DOI: 10.1093/humrep/dew183] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Are there correlations among human blastocyst ploidy status, standard morphology evaluation and time-lapse kinetics? SUMMARY ANSWER Correlations were observed, in that euploid human blastocysts showed a higher percentage with top quality inner cell mass (ICM) and trophectoderm (TE), higher expansion grades and shorter time to start of blastulation, expansion and hatching, compared to aneuploid ones. WHAT IS KNOWN ALREADY Embryo quality has always been considered an important predictor of successful implantation and pregnancy. Nevertheless, knowledge of the relative impact of each morphological parameter at the blastocyst stage needs to be increased. Recently, with the introduction of time-lapse technology, morphokinetic parameters can also be evaluated. However, a large number of studies has reported conflicting outcomes. STUDY DESIGN, SIZE, DURATION This was a consecutive case series study. The morphology of 1730 blastocysts obtained in 530 PGS cycles performed from September 2012 to April 2014 that underwent TE biopsy and array comparative genomic hybridization was analyzed retrospectively. A total of 928 blastocysts were cultured in a time-lapse incubator allowing morphokinetic parameters to be analyzed. PARTCIPANTS/MATERIALS, SETTING, METHOD Mean female age was 36.8 ± 4.24 years. Four hunderd fifty-four couples were enrolled in the study: 384, 64 and 6 of them performed single, double or triple PGS cycles, respectively. In standard morphology evaluation, the expansion grade, and quality of the ICM and TE were analyzed. The morphokinetic parameters observed were second polar body extrusion, appearance of two pronuclei, pronuclear fading, onset of two- to eight-cell divisions, time between the two- and three-cell (cc2) and three- and four-cell (s2) stages, morulae formation time, starting blastulation, full blastocyst stage, expansion and hatching timing. MAIN RESULTS AND THE ROLE OF CHANCE Of the 1730 biopsied blastocysts, 603 were euploid and 1127 aneuploid. We observed that 47.2% of euploid and 32.8% of aneuploid blastocysts showed top quality ICM (P < 0.001), and 17.1% of euploid and 28.5% of aneuploid blastocysts showed poor quality ICM (P < 0.001). Top quality TE was present in 46.5% of euploid and 31.1% of aneuploid blastocysts (P < 0.001), while 26.6% of euploid and 38.1% of aneuploid blastocysts showed poor quality TE (P < 0.001). Regarding expansion grade, 81.1% of euploid and 72.4% of aneuploid blastocysts were fully expanded (Grade 5-6; P < 0.001). The timing of cleavage from the three- to four-cell stage, of reaching four-cell stage, of starting blastulation, reaching full blastocyst stage, blastocyst expansion and hatching were 2.6 (95% confidence interval (CI): 1.7-3.5), 40.0 (95% CI: 39.3-40.6), 103.4 (95% CI: 102.2-104.6), 110.2 (95% CI: 108.8-111.5), 118.7 (95% CI: 117.0-120.5) and 133.2 (95% CI: 131.2-135.2) hours in euploid blastocysts, and 4.2 (95% CI: 3.6-4.8), 41.1 (95% CI: 40.6-41.6), 105.0 (95% CI: 104.0-106.0), 112.8 (95% CI: 111.7-113.9), 122.1 (95% CI: 120.7-123.4) and 137.4 (95% CI: 135.7-139.1) hours in aneuploid blastocysts (P < 0.05 for early and P < 0.0001 for later stages of development), respectively. No statistically significant differences were found between euploid and aneuploid blastocysts for the remaining morphokinetic parameters.A total of 407 embryo transfers were performed (155 fresh, 252 frozen-thawed blastocysts). Higher clinical pregnancy, implantation and live birth rates were obtained in frozen-thawed compared to fresh embryo transfers (P = 0.0104, 0.0091 and 0.0148, respectively). The miscarriage rate was 16.1% and 19.6% in cryopreserved and fresh embryo transfer, respectively. The mean female age was lower in the euploid compared to aneuploid groups (35.0 ± 3.78 versus 36.7 ± 4.13 years, respectively), We found an increasing probability for aneuploidy with female age of 10% per year (odds ratio (OR) = 1.1, 95% CI: 1.1-1.2, P < 0.001). LIMITATIONS, REASONS FOR CAUTION The main limitation of morphology assessment is that it is a static system and can be operator-dependent. In this study, eight embryologists performed morphology assessments. The main limitation of the time-lapse technology is that it is impossible to rotate the embryos making it very difficult to observe them in case of blastomere overlapping or increased cytoplasmic fragmentation. WIDER IMPLICATIONS OF THE FINDINGS Although there seems to be a relationship between the ploidy status and blastocyst morphology/development dynamics, the evaluation of morphological and morphokinetic parameters cannot currently be improved upon, and therefore replace, PGS. Our results on ongoing pregnancy and miscarriage rates suggest that embryo evaluation by PGS or time-lapse imaging may not improve IVF outcome. However, time-lapse monitoring could be used in conjunction with PGS to choose, within a cohort, the blastocysts to analyze or, when more than one euploid blastocyst is available, to select which one should be transferred. STUDY FUNDING/COMPETING INTERESTS No specific funding was obtained for this study. None of the authors have any competing interests to declare.
Collapse
Affiliation(s)
- Maria Giulia Minasi
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, Rome 00149, Italy
| | - Alessandro Colasante
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, Rome 00149, Italy
| | - Teresa Riccio
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, Rome 00149, Italy
| | - Alessandra Ruberti
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, Rome 00149, Italy
| | - Valentina Casciani
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, Rome 00149, Italy
| | - Filomena Scarselli
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, Rome 00149, Italy
| | - Francesca Spinella
- Molecular Genetics Laboratory, "GENOMA", Via di Castel Giubileo 11, Rome 00138, Italy
| | - Francesco Fiorentino
- Molecular Genetics Laboratory, "GENOMA", Via di Castel Giubileo 11, Rome 00138, Italy
| | | | - Ermanno Greco
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, Rome 00149, Italy
| |
Collapse
|
25
|
Sermon K, Capalbo A, Cohen J, Coonen E, De Rycke M, De Vos A, Delhanty J, Fiorentino F, Gleicher N, Griesinger G, Grifo J, Handyside A, Harper J, Kokkali G, Mastenbroek S, Meldrum D, Meseguer M, Montag M, Munné S, Rienzi L, Rubio C, Scott K, Scott R, Simon C, Swain J, Treff N, Ubaldi F, Vassena R, Vermeesch JR, Verpoest W, Wells D, Geraedts J. The why, the how and the when of PGS 2.0: current practices and expert opinions of fertility specialists, molecular biologists, and embryologists. Mol Hum Reprod 2016; 22:845-57. [PMID: 27256483 PMCID: PMC4986417 DOI: 10.1093/molehr/gaw034] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/12/2016] [Accepted: 05/16/2016] [Indexed: 01/11/2023] Open
Abstract
STUDY QUESTION We wanted to probe the opinions and current practices on preimplantation genetic screening (PGS), and more specifically on PGS in its newest form: PGS 2.0? STUDY FINDING Consensus is lacking on which patient groups, if any at all, can benefit from PGS 2.0 and, a fortiori, whether all IVF patients should be offered PGS. WHAT IS KNOWN ALREADY It is clear from all experts that PGS 2.0 can be defined as biopsy at the blastocyst stage followed by comprehensive chromosome screening and possibly combined with vitrification. Most agree that mosaicism is less of an issue at the blastocyst stage than at the cleavage stage but whether mosaicism is no issue at all at the blastocyst stage is currently called into question. STUDY DESIGN, SAMPLES/MATERIALS, METHODS A questionnaire was developed on the three major aspects of PGS 2.0: the Why, with general questions such as PGS 2.0 indications; the How, specifically on genetic analysis methods; the When, on the ideal method and timing of embryo biopsy. Thirty-five colleagues have been selected to address these questions on the basis of their experience with PGS, and demonstrated by peer-reviewed publications, presentations at meetings and participation in the discussion. The first group of experts who were asked about 'The Why' comprised fertility experts, the second group of molecular biologists were asked about 'The How' and the third group of embryologists were asked about 'The When'. Furthermore, the geographical distribution of the experts has been taken into account. Thirty have filled in the questionnaire as well as actively participated in the redaction of the current paper. MAIN RESULTS AND THE ROLE OF CHANCE The 30 participants were from Europe (Belgium, Germany, Greece, Italy, Netherlands, Spain, UK) and the USA. Array comparative genome hybridization is the most widely used method amongst the participants, but it is slowly being replaced by massive parallel sequencing. Most participants offering PGS 2.0 to their patients prefer blastocyst biopsy. The high efficiency of vitrification of blastocysts has added a layer of complexity to the discussion, and it is not clear whether PGS in combination with vitrification, PGS alone, or vitrification alone, followed by serial thawing and eSET will be the favoured approach. The opinions range from in favour of the introduction of PGS 2.0 for all IVF patients, over the proposal to use PGS as a tool to rank embryos according to their implantation potential, to scepticism towards PGS pending a positive outcome of robust, reliable and large-scale RCTs in distinct patient groups. LIMITATIONS, REASONS FOR CAUTION Care was taken to obtain a wide spectrum of views from carefully chosen experts. However, not all invited experts agreed to participate, which explains a lack of geographical coverage in some areas, for example China. This paper is a collation of current practices and opinions, and it was outside the scope of this study to bring a scientific, once-and-for-all solution to the ongoing debate. WIDER IMPLICATIONS OF THE FINDINGS This paper is unique in that it brings together opinions on PGS 2.0 from all different perspectives and gives an overview of currently applied technologies as well as potential future developments. It will be a useful reference for fertility specialists with an expertise outside reproductive genetics. LARGE SCALE DATA none. STUDY FUNDING AND COMPETING INTERESTS No specific funding was obtained to conduct this questionnaire.
Collapse
Affiliation(s)
- Karen Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Antonio Capalbo
- GENETYX, Molecular Genetics Laboratory, Via Fermi 1, 36063 Marostica (VI), Italy
| | - Jacques Cohen
- ART Institute of Washington at Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Edith Coonen
- Department of Reproductive Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands Department of Clinical Genetics, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Martine De Rycke
- Centre for Medical Genetics, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Anick De Vos
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Joy Delhanty
- University College London Centre for PGD, UCL, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Francesco Fiorentino
- GENOMA-Molecular Genetics Laboratories, Via di Castel Giubileo, 11 00138, Rome, Italy
| | - Norbert Gleicher
- The Center for Human Reproduction, New York, NY 10021, USA The Foundation for Reproductive Medicine, New York, NY 1022, USA The Rockefeller University, New York, NY 10065, USA
| | - Georg Griesinger
- Department of Reproductive Medicine and Gynecological Endocrinology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Jamie Grifo
- NYU Fertility Center, NYU Langone Medical Center, 660 1st Ave, New York, NY 10016, USA
| | - Alan Handyside
- The Bridge Centre, London SE1 9RY, UK Illumina Cambridge Ltd, Capital Park CPC4, Fulbourn, Cambridge CB21 5XE, UK
| | - Joyce Harper
- University College London Centre for PGD, UCL, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Georgia Kokkali
- Centre for Human Reproduction, Reproductive Medicine Unit, Genesis Athens Clinic, Papanicoli 14-16, Chalandri, 152-32, Athens, Greece
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David Meldrum
- Division of Reproductive Endocrinology and Infertility, University of California San Diego, San Diego, CA, USA
| | - Marcos Meseguer
- Instituto Valenciano de Infertilidad (IVI) Clinic Valencia, Valencia, Spain
| | - Markus Montag
- ilabcomm GmbH, Eisenachstr. 34, 53757 Sankt Augustin, Germany
| | | | - Laura Rienzi
- GENERA, Centres for Reproductive Medicine, Rome, Italy
| | - Carmen Rubio
- Igenomix, and IVI Fundation, Parc Cientific Universitat de Valencia, Catedrático Agustín Escardino 9, 46980 Paterna, Valencia, Spain
| | | | - Richard Scott
- Reproductive Medicine Associates (RMA) of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA
| | - Carlos Simon
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain INCLIVA Health Research Institute, Valencia, Spain IGenomix, Valencia, Spain
| | - Jason Swain
- CCRM IVF Laboratory Network, Englewood, CO 80112 USA
| | - Nathan Treff
- Reproductive Medicine Associates (RMA) of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA
| | | | - Rita Vassena
- Clinica EUGIN, Travessera de Les Corts 322, 08029 Barcelona, Spain
| | | | - Willem Verpoest
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Dagan Wells
- Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK Reprogenetics UK, Institute of Reproductive Sciences, Oxford Business Park, Oxford OX4 2HW, UK
| | - Joep Geraedts
- Department of Reproductive Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands Department of Clinical Genetics, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
26
|
Clinical application of next-generation sequencing in preimplantation genetic diagnosis cycles for Robertsonian and reciprocal translocations. J Assist Reprod Genet 2016; 33:899-906. [PMID: 27167073 DOI: 10.1007/s10815-016-0724-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The purpose of this study was to apply next-generation sequencing (NGS) technology to identify chromosomally normal embryos for transfer in preimplantation genetic diagnosis (PGD) cycles for translocations. METHODS A total of 21 translocation couples with a history of infertility and repeated miscarriage presented at our PGD clinic for 24-chromosome embryo testing using copy number variation sequencing (CNV-Seq). RESULTS Testing of 98 embryo samples identified 68 aneuploid (69.4 %) and 30 (30.6 %) euploid embryos. Among the aneuploid embryos, the most common abnormalities were segmental translocation imbalances, followed by whole autosomal trisomies and monosomies, segmental imbalances of non-translocation chromosomes, and mosaicism. In all unbalanced embryos resulting from reciprocal translocations, CNV-Seq precisely identified both segmental imbalances, extending from the predicted breakpoints to the chromosome termini. From the 21 PGD cycles, eight patients had all abnormal embryos and 13 patients had at least one normal/balanced and euploid embryo available for transfer. In nine intrauterine transfer cycles, seven healthy babies have been born. In four of the seven children tested at 18 weeks gestation, the karyotypes matched with the original PGD results. CONCLUSION In clinical PGD translocation cycles, CNV-Seq displayed the hallmarks of a comprehensive diagnostic technology for high-resolution 24-chromosome testing of embryos, capable of identifying true euploid embryos for transfer.
Collapse
|
27
|
Deprest J, Ghidini A, Van Mieghem T, Bianchi DW, Faas B, Chitty LS. In case you missed it: the Prenatal Diagnosis
editors bring you the most significant advances of 2015. Prenat Diagn 2016; 36:3-9. [DOI: 10.1002/pd.4758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jan Deprest
- Department of Obstetrics and Gynecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration, Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Alessandro Ghidini
- Department of Obstetrics and Gynecology; Georgetown University Hospital; Washington DC USA
| | - Tim Van Mieghem
- Department of Obstetrics and Gynecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration, Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Diana W. Bianchi
- Mother Infant Research Institute, Tufts Medical Center; Boston MA
- Floating Hospital for Children; Boston MA USA
| | - Brigitte Faas
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Lyn S. Chitty
- UCL Institute of Child Health; Great Ormond Street Hospital for Children and NHS Foundation Trust; London UK
| |
Collapse
|
28
|
|
29
|
Chitty LS, Bianchi DW. Next generation sequencing and the next generation: how genomics is revolutionizing reproduction. Prenat Diagn 2015; 35:929-30. [PMID: 26443108 DOI: 10.1002/pd.4679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lyn S Chitty
- UCL Institute of Child Health and Great Ormond Street NHS Foundation Trust, London, UK
| | - Diana W Bianchi
- Floating Hospital for Children at Tufts Medical Center, Boston, USA
| |
Collapse
|