1
|
Cogan G, Troadec MB, Devillard F, Saint-Frison MH, Geneviève D, Vialard F, Rial-Sebbag E, Héron D, Attie-Bitach T, Benachi A, Saugier-Veber P. Use of Prenatal Exome Sequencing: Opinion Statement of the French Federation of Human Genetics Working Group. Prenat Diagn 2024. [PMID: 39532683 DOI: 10.1002/pd.6692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Prenatal whole exome sequencing (pES) is increasingly prescribed for fetuses with ultrasound anomalies. Starting from the local French prenatal medicine practice, healthcare system and legal landscape, we aimed to address the broad medical and ethical issues raised by the use of pES for women and couples as well as for prenatal care providers. METHOD The French Federation of Human Genetics established a working group composed of clinicians and biologists from all over France to discuss pES challenges. A literature review was also performed. RESULTS We emphasize the importance of non-directive information that helps couples make a decision that is consistent with their personal values and ideas. We address the difficulty of obtaining informed consent that respects the couple's autonomy, despite the complexity of the information and regardless of their level of education and cultural background. We address whether variants of uncertain significance and unsolicited results should be reported. We emphasize the need for national harmonization of access to pES and the need for multidisciplinary meetings in complex situations. We point out that the specific French context of healthcare financing and the French law have a major influence on medical care organization and support for couples. The outcome of the working group is the development of 12 proposals. CONCLUSION This opinion statement, dedicated to prenatal care providers worldwide although linked to the French context, will provide food for thought and assist them in understanding the complexity and implications of pES.
Collapse
Affiliation(s)
- Guillaume Cogan
- Département de génétique médicale, AP-HP Sorbonne Université, UF de Neurogénétique Moléculaire et Cellulaire, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, service de génétique, laboratoire de génétique chromosomique, Brest, France
| | - Françoise Devillard
- Service de génétique génomique et procréation, Hôpital Couple-Enfant, CHU Grenoble, Grenoble, France
| | | | - David Geneviève
- Université Montpellier, Inserm U1183, centre de référence anomalies du développement et syndromes malformatifs, Service de génétique clinique, CHU Montpellier, Montpellier, France
| | - François Vialard
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, Poissy, France
| | | | - Delphine Héron
- Département de génétique médicale, AP-HP Sorbonne Université, UF de génétique clinique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tania Attie-Bitach
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alexandra Benachi
- AP-HP, Université Paris-Saclay, Service de Gynécologie-Obstétrique, Hôpital Antoine Béclère, Clamart, France
| | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Université Rouen Normandie, Inserm U1245 and CHU Rouen, Rouen, France
| |
Collapse
|
2
|
Schubert C, Milverton J, Goodall S, Merlin T. A systematic review to assess the utility of genomic autopsy using exome or genome sequencing in cases of congenital anomalies and perinatal death. Genet Med 2024; 26:101159. [PMID: 38704678 DOI: 10.1016/j.gim.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
PURPOSE Exome or genome sequencing (ES or GS) can identify genetic causes of otherwise unexplained congenital anomaly and perinatal death (PND) but is not routine practice. The evidence base for "genomic autopsy" after termination of pregnancy for fetal anomaly (TOPFA) and PND has been synthesized to determine the value of this investigation. METHODS We conducted a systematic review and meta-analysis of studies meeting prespecified inclusion criteria and containing ≥10 cases of TOPFA or PND (with or without major congenital abnormality), in which ES or GS was conducted. We determined test performance, including diagnostic yield, accuracy, and reliability. We also reported outcomes associated with clinical utility and harms, where described. RESULTS From 2245 potentially eligible studies, 32 publications were eligible and had data extracted, representing 2120 cases that could be meta-analyzed. No diagnostic accuracy or comparative studies were identified, although some analysis of concordance between different ES/GS methodologies could be performed. Studies reporting parent-related outcomes or long-term follow-up did not do so in a systematic or quantifiable manner. CONCLUSION Evidence suggests that approximately one-fourth to one-third of fetal losses associated with TOPFA or unexplained PND are associated with a genetic cause identifiable on ES or GS-albeit this estimate varies depending on phenotypic and background risk factors. Despite the large body of evidence on ES and GS, little research has attempted to validate the accuracy of testing, nor measure the clinical or societal outcomes in families that follow the diagnostic investigation in this context.
Collapse
Affiliation(s)
- Camille Schubert
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia.
| | - Joanne Milverton
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, Faculty of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Tracy Merlin
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Turgut GT, Altunoglu U, Gulec C, Sarac Sivrikoz T, Kalaycı T, Toksoy G, Avcı Ş, Yıldırım BT, Sayın GY, Kalelioglu IH, Karaman B, Has R, Başaran S, Yuksel A, Kayserili H, Uyguner ZO. Clinical and molecular characteristics of 26 fetuses with lethal multiple congenital contractures. Clin Genet 2024; 105:596-610. [PMID: 38278647 DOI: 10.1111/cge.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Multiple congenital contractures (MCC) due to fetal akinesia manifest across a broad spectrum of diseases, ranging from mild distal arthrogryposis to lethal fetal akinesia deformation sequence. We hereby present a series of 26 fetuses displaying severe MCC phenotypes from 18 families and describe detailed prenatal ultrasound findings, postmortem clinical evaluations, and genetic investigations. Most common prenatal findings were abnormal facial profile (65%), central nervous system abnormalities (62%), polyhydramnios (50%), increased nuchal translucency (50%), and fetal hydrops (35%). Postmortem examinations unveiled additional anomalies including facial dysmorphisms, dysplastic skeletal changes, ichthyosis, multiple pterygia, and myopathy, allowing preliminary diagnosis of particular Mendelian disorders in multiple patients. Evaluation of the parents revealed maternal grip myotonia in one family. By exome sequencing and targeted testing, we identified causative variants in ACTC1, CHST14, COG6, DMPK, DOK7, HSPG2, KLHL7, KLHL40, KIAA1109, NEB, PSAT1, RAPSN, USP14, and WASHC5 in 15 families, and one patient with a plausible diagnosis associated with biallelic NEB variants. Three patients received a dual diagnosis. Pathogenic alterations in newly discovered genes or in previously known genes recently linked to new MCC phenotypes were observed in 44% of the cohort. Our results provide new insights into the clinical and molecular landscape of lethal MCC phenotypes.
Collapse
Affiliation(s)
- Gozde Tutku Turgut
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Cagri Gulec
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tugba Sarac Sivrikoz
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuğba Kalaycı
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Şahin Avcı
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Behiye Tuğçe Yıldırım
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gözde Yeşil Sayın
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ibrahim Halil Kalelioglu
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Recep Has
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seher Başaran
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Atil Yuksel
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Xu K, Li G, Wu Z, Zhang TJ, Wu N. Diagnosis and treatment of the Ehlers-Danlos syndromes in China: synopsis of the first guidelines. Orphanet J Rare Dis 2024; 19:194. [PMID: 38741208 DOI: 10.1186/s13023-024-03121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The Ehlers-Danlos syndromes (EDS) are a group of rare hereditary connective tissue disorders. EDS is clinically and genetically heterogeneous and usually involves multiple systems. There are 14 subtypes of EDS with hallmark features including joint hypermobility, skin hyperextensibility, and tissue fragility. The clinical manifestations and their severity differ among the subtypes, encompassing recurrent joint dislocations, scoliosis, arterial aneurysm and dissection, and organ rupture. Challenges in diagnosis and management arise from the complexity of the disease, which is further complicated by its rarity. The development of clinical guidelines and implementation of coordinated multi-disciplinary team (MDT) approaches have emerged as global priorities. MAIN BODY Chinese Multi-Disciplinary Working Group on the Ehlers-Danlos Syndromes was therefore established. Healthcare professionals were recruited from 25 top hospitals across China. The experts are specialized in 24 fields, including genetics, vascular surgery, dermatology, and orthopedics, as well as nursing care, rehabilitation, psychology, and nutrition. Based on GRADE methodology, the Guidelines were written by the Group supervised by methodologists, following a systemic review of all 4453 articles in PubMed published before August 9, 2023, using the search term "Ehlers Danlos". A coordinated MDT approach for the diagnosis and management of EDS is highly recommended by the Group, along with 29 specific recommendations addressing key clinical questions. In addition to the treatment plan, the Guidelines also emphasize integrating support from nursing care, rehabilitation, psychology, and nutrition. This integration not only facilitates recovery in hospital settings, but most importantly, the transition from an illness-defined life to a more "normalized" life. CONCLUSION The first guidelines on EDS will shorten the diagnostic odyssey and solve the unmet medical needs of the patients. This article is a synopsis of the full guidelines.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Guozhuang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Terry Jianguo Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Comeau D, Belliveau J, Bouhamdani N, Amor MB. Expanding the phenotypic spectrum for CDK8-related disease: A case report. Am J Med Genet A 2024; 194:e63537. [PMID: 38193604 DOI: 10.1002/ajmg.a.63537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Cyclin-dependent kinase 8 (CDK8) is part of a regulatory kinase module that regulates the activity of the Mediator complex. The Mediator, a large conformationally flexible protein complex, goes on to regulate RNA polymerase II activity, consequently affecting transcriptional regulation. Thus, inactivating mutations of the genes within the kinase module cause aberrant transcriptional regulation and disease, namely, CDK8-related intellectual developmental disorder with hypotonia and behavioral abnormalities (IDDHBA). CASE PRESENTATION We describe, for the first time, a likely pathogenic heterozygous CDK8 variant c.599G>A, p.(Arg200Gln) inherited from the biological mother. The clinical presentation of the child and mother is within the described clinical spectrum for IDDHBA; however, undocumented progressive contractures of the hips and knees as well as scoliosis were also observed in the child. This phenotype was not found in the mother, highlighting a heterogenous presentation for the same variant within the same family. Furthermore, the described clinical presentation may further support the notion of a module- or Mediator-related syndrome with varying clinical presentation. CONCLUSION This case report documents the first inherited case of IDDHBA and expands the phenotypic spectrum for CDK8-related disease to include undocumented progressive contractures of the hips and knees as well as scoliosis, which may support the notion of a module- or Mediator-related syndrome with varying clinical presentation.
Collapse
Affiliation(s)
- Dominique Comeau
- Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
| | - Jenna Belliveau
- Centre de formation médicale du New-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada
| | - Nadia Bouhamdani
- Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
- Centre de formation médicale du New-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada
- Medical Genetics Department, Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
| | - Mouna Ben Amor
- Medical Genetics Department, Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
| |
Collapse
|
6
|
Makhamreh MM, Shivashankar K, Araji S, Critchlow E, O'Brien BM, Wodoslawsky S, Berger SI, Al-Kouatly HB. RASopathies are the most common set of monogenic syndromes identified by exome sequencing for nonimmune hydrops fetalis: A systematic review and meta-analysis. Am J Med Genet A 2024; 194:e63494. [PMID: 38156365 DOI: 10.1002/ajmg.a.63494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
RASopathies are a group of malformation syndromes known to lead to nonimmune hydrops fetalis (NIHF) in severe presentations. Pathogenic variants can be de novo or parentally inherited. Despite being a known frequent presentation, the fraction of monogenic NIHF cases due to RASopathies is limited in the literature. Also, the specific parental contribution of RASopathies to NIHF is not well described. Our objective was to review pooled exome sequencing (ES) diagnostic yield of RASopathies for NIHF and to determine the parental contribution of RASopathy to NIHF. We performed a systematic review of prenatal ES studies from January 1, 2000 to August 1, 2022. Thirty-six studies met inclusion criteria. Cases with RASopathy gene variants were reviewed. NIHF cases were further classified as isolated or non-isolated. Thirty-six ES studies including 46 pregnancies with NIHF and a diagnosed RASopathy were reviewed. Forty-four diagnostic variants and 2 variants of uncertain significance in 12 RASopathy genes were identified. Expanding on what was previously published, a total of 506 NIHF cases were extracted with 191 cases yielding a positive diagnosis by ES. The overall rate of RASopathy diagnosis in clinically diagnosed NIHF cases was 9% (44/506). The rate of RASopathy diagnosis among NIHF cases with positive genetic diagnosis by ES was 23% (44/191). Of the 46 cases identified, 13 (28%) variants were parentally inherited; specifically, 5/13 (38%) maternal, 3/13 (23%) paternal, 2/13 (15%) biparental, and 3/13 (23%) unspecified. Majority of NIHF cases 29/46 (63%) were isolated. Among NIHF cases with positive ES diagnoses, RASopathy diagnostic yield by ES was 23%. NIHF secondary to RASopathies was parentally inherited in 28% of cases. Most cases of NIHF due to RASopathy were isolated, with no prenatal detection of associated anomalies.
Collapse
Affiliation(s)
- Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Sarah Araji
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Mississippi, Jackson, Mississippi, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barbara M O'Brien
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research and Rare Disease Institute, Children's National Medical Center, Washington, DC, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Mustafa HJ, Barbera JP, Sambatur EV, Pagani G, Yaron Y, Baptiste CD, Wapner RJ, Brewer CJ, Khalil A. Diagnostic yield of exome sequencing in prenatal agenesis of corpus callosum: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:312-320. [PMID: 37519216 DOI: 10.1002/uog.27440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES To determine the incremental diagnostic yield of exome sequencing (ES) after negative chromosomal microarray analysis (CMA) in cases of prenatally diagnosed agenesis of the corpus callosum (ACC) and to identify the associated genes and variants. METHODS A systematic search was performed to identify relevant studies published up until June 2022 using four databases: PubMed, SCOPUS, Web of Science and The Cochrane Library. Studies in English reporting on the diagnostic yield of ES following negative CMA in prenatally diagnosed partial or complete ACC were included. Authors of cohort studies were contacted for individual participant data and extended cohorts were provided for two of them. The increase in diagnostic yield with ES for pathogenic/likely pathogenic (P/LP) variants was assessed in all cases of ACC, isolated ACC, ACC with other cranial anomalies and ACC with extracranial anomalies. To identify all reported genetic variants, the systematic review included all ACC cases; however, for the meta-analysis, only studies with ≥ three ACC cases were included. Meta-analysis of proportions was employed using a random-effects model. Quality assessment of the included studies was performed using modified Standards for Reporting of Diagnostic Accuracy criteria. RESULTS A total of 28 studies, encompassing 288 prenatally diagnosed ACC cases that underwent ES following negative CMA, met the inclusion criteria of the systematic review. We classified 116 genetic variants in 83 genes associated with prenatal ACC with a full phenotypic description. There were 15 studies, encompassing 268 cases, that reported on ≥ three ACC cases and were included in the meta-analysis. Of all the included cases, 43% had a P/LP variant on ES. The highest yield was for ACC with extracranial anomalies (55% (95% CI, 35-73%)), followed by ACC with other cranial anomalies (43% (95% CI, 30-57%)) and isolated ACC (32% (95% CI, 18-51%)). CONCLUSIONS ES demonstrated an incremental diagnostic yield in cases of prenatally diagnosed ACC following negative CMA. While the greatest diagnostic yield was observed in ACC with extracranial anomalies and ACC with other central nervous system anomalies, ES should also be considered in cases of isolated ACC. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- H J Mustafa
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Children and Indiana University Health Fetal Center, Indianapolis, IN, USA
| | - J P Barbera
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - E V Sambatur
- Research Division, Houston Center for Maternal Fetal Medicine, Houston, TX, USA
| | - G Pagani
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, ASST-Papa Giovanni XXIII, Bergamo, Italy
| | - Y Yaron
- Prenatal Genetic Diagnosis Unit, Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C D Baptiste
- Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, NY, USA
| | - R J Wapner
- Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, NY, USA
| | - C J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - A Khalil
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
8
|
Drexler KA, Talati AN, Gilmore KL, Veazey RV, Powell BC, Weck KE, Davis EE, Vora NL. Association of deep phenotyping with diagnostic yield of prenatal exome sequencing for fetal brain abnormalities. Genet Med 2023; 25:100915. [PMID: 37326029 PMCID: PMC10580430 DOI: 10.1016/j.gim.2023.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE To evaluate whether deep prenatal phenotyping of fetal brain abnormalities (FBAs) increases diagnostic yield of trio-exome sequencing (ES) compared with standard phenotyping. METHODS Retrospective exploratory analysis of a multicenter prenatal ES study. Participants were eligible if an FBA was diagnosed and subsequently found to have a normal microarray. Deep phenotyping was defined as phenotype based on targeted ultrasound plus prenatal/postnatal magnetic resonance imaging, autopsy, and/or known phenotypes of other affected family members. Standard phenotyping was based on targeted ultrasound alone. FBAs were categorized by major brain findings on prenatal ultrasound. Cases with positive ES results were compared with those that have negative results by available phenotyping, as well as diagnosed FBAs. RESULTS A total of 76 trios with FBAs were identified, of which 25 (33%) cases had positive ES results and 51 (67%) had negative results. Individual modalities of deep phenotyping were not associated with diagnostic ES results. The most common FBAs identified were posterior fossa anomalies and midline defects. Neural tube defects were significantly associated with receipt of a negative ES result (0% vs 22%, P = .01). CONCLUSION Deep phenotyping was not associated with increased diagnostic yield of ES for FBA in this small cohort. Neural tube defects were associated with negative ES results.
Collapse
Affiliation(s)
- Kathleen A Drexler
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Asha N Talati
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly L Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rachel V Veazey
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bradford C Powell
- Department of Pediatrics, Division of Genetics and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Karen E Weck
- Department of Genetics, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erica E Davis
- Department of Pediatrics, Department of Cell and Developmental Biology, Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
9
|
Al-Kouatly HB, Shivashankar K, Mossayebi MH, Makhamreh M, Critchlow E, Gao Z, Fasehun LK, Alkuraya FS, Ryan EE, Hegde M, Wodoslawsky S, Hughes J, Berger SI. Diagnostic yield from prenatal exome sequencing for non-immune hydrops fetalis: A systematic review and meta-analysis. Clin Genet 2023; 103:503-512. [PMID: 36757664 DOI: 10.1111/cge.14309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Non-immune hydrops fetalis (NIHF) has multiple genetic etiologies diagnosable by exome sequencing (ES). We evaluated the yield of prenatal ES for NIHF, and the contribution of additional clinical findings and history. Systematic review was performed with PROSPERO tag 232951 using CINAHL, PubMed, and Ovid MEDLINE from January 1, 2000 through December 1, 2021. Selected studies performed ES to augment standard prenatal diagnostic approaches. Cases meeting a strict NIHF phenotype were tabulated with structured data imputed from papers or requested from authors. Genetic variants and diagnostic outcomes were harmonized across studies using current ACMG and ClinGen variant classification guidelines. Thirty-one studies reporting 445 NIHF cases had a 37% (95% CI: 32%-41%) diagnostic rate. There was no significant difference between isolated NIHF and NIHF with fetal malformations or between recurrent and simplex cases. Diagnostic rate was higher for consanguineous than non-consanguineous cases. Disease categories included RASopathies (24%), neuromuscular (21%), metabolic (17%), lymphatic (13%), other syndromes (9%), cardiovascular (5%), hematologic (2%), skeletal (2%), and other categories (7%). Inheritance patterns included recessive (55%), dominant (41%), and X-linked (4%). ES should be considered in the diagnostic workup of NIHF with and without associated ultrasound findings regardless of history of recurrence or consanguinity.
Collapse
Affiliation(s)
- Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Matthew H Mossayebi
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mona Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zimeng Gao
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Luther-King Fasehun
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Erin E Ryan
- Genomic Data / Genetic Counseling, GeneDx, Gaithersburg, Maryland, USA
| | - Madhuri Hegde
- Global Lab Services, PerkinElmer Genomics, Atlanta, Georgia, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joel Hughes
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
| |
Collapse
|
10
|
Sparks TN, Dugoff L. How to choose a test for prenatal genetic diagnosis: a practical overview. Am J Obstet Gynecol 2023; 228:178-186. [PMID: 36029833 PMCID: PMC9877133 DOI: 10.1016/j.ajog.2022.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Establishing the diagnosis of a fetal genetic disease in utero expands decision-making opportunities for individuals during pregnancy and enables providers to tailor prenatal care and surveillance to disease-specific risks. The selection of prenatal genetic tests is guided by key details from fetal imaging, family and obstetrical history, suspected diagnoses and mechanisms of disease, an accurate understanding of what abnormalities each test is designed to detect, and, at times, the gestational age at which testing is initiated. Pre- and posttest counseling, by or in conjunction with providers trained in genetics, ensure an accurate understanding of genetic tests, their potential results and limitations, estimated turnaround time for results, and the clinical implications of their findings. As prenatal diagnosis and testing options continue to expand rapidly, it is increasingly important for obstetrical providers to understand how to choose appropriate genetic testing and contextualize the clinical implications of their results.
Collapse
Affiliation(s)
- Teresa N Sparks
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA.
| | - Lorraine Dugoff
- Divisions of Reproductive Genetics and Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Tran Mau-Them F, Delanne J, Denommé-Pichon AS, Safraou H, Bruel AL, Vitobello A, Garde A, Nambot S, Bourgon N, Racine C, Sorlin A, Moutton S, Marle N, Rousseau T, Sagot P, Simon E, Vincent-Delorme C, Boute O, Colson C, Petit F, Legendre M, Naudion S, Rooryck C, Prouteau C, Colin E, Guichet A, Ziegler A, Bonneau D, Morel G, Fradin M, Lavillaureix A, Quelin C, Pasquier L, Odent S, Vera G, Goldenberg A, Guerrot AM, Brehin AC, Putoux A, Attia J, Abel C, Blanchet P, Wells CF, Deiller C, Nizon M, Mercier S, Vincent M, Isidor B, Amiel J, Dard R, Godin M, Gruchy N, Jeanne M, Schaeffer E, Maillard PY, Payet F, Jacquemont ML, Francannet C, Sigaudy S, Bergot M, Tisserant E, Ascencio ML, Binquet C, Duffourd Y, Philippe C, Faivre L, Thauvin-Robinet C. Prenatal diagnosis by trio exome sequencing in fetuses with ultrasound anomalies: A powerful diagnostic tool. Front Genet 2023; 14:1099995. [PMID: 37035737 PMCID: PMC10076577 DOI: 10.3389/fgene.2023.1099995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies.
Collapse
Affiliation(s)
- Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
- *Correspondence: Frédéric Tran Mau-Them,
| | - Julian Delanne
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
| | - Hana Safraou
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
| | - Ange-Line Bruel
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
| | - Aurore Garde
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Nicolas Bourgon
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Caroline Racine
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Arthur Sorlin
- INSERM UMR1231 GAD, F-21000, Dijon, France
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Sébastien Moutton
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Nathalie Marle
- Laboratoire Génétique Chromosomique et Moléculaire, CHU Dijon Bourgogne, Dijon, France
| | - Thierry Rousseau
- Service de Gynécologie Obstétrique, Médecine Fœtale et Stérilité Conjugale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Paul Sagot
- Service de Gynécologie Obstétrique, Médecine Fœtale et Stérilité Conjugale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Emmanuel Simon
- Service de Gynécologie Obstétrique, Médecine Fœtale et Stérilité Conjugale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Catherine Vincent-Delorme
- CHU Lille, Clinique de Génétique Guy Fontaine, Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs” Nord-Ouest, FLille, France
| | - Odile Boute
- CHU Lille, Clinique de Génétique Guy Fontaine, Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs” Nord-Ouest, FLille, France
| | - Cindy Colson
- CHU Lille, Clinique de Génétique Guy Fontaine, Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs” Nord-Ouest, FLille, France
| | - Florence Petit
- CHU Lille, Clinique de Génétique Guy Fontaine, Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs” Nord-Ouest, FLille, France
| | - Marine Legendre
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Sophie Naudion
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Caroline Rooryck
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Clément Prouteau
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Estelle Colin
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Agnès Guichet
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Alban Ziegler
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Dominique Bonneau
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Godelieve Morel
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Alinoé Lavillaureix
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Chloé Quelin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Gabriella Vera
- Service de Génétique—Unité de Génétique Clinique, Rouen, France
| | | | | | | | - Audrey Putoux
- Service de Génétique—GH Est-Hôpital Femme Mère Enfant, Lyon, France
| | | | - Carine Abel
- Service de Génétique et Centre de Diagnostic Anténatal, CHU de Lyon HCL—GH Nord-Hôpital de La Croix Rousse, Lyon, France
| | - Patricia Blanchet
- Equipe Maladies Génétiques de L’Enfant et de L’Adulte, Département Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, University Montpellier, Montpellier, France
| | - Constance F. Wells
- Equipe Maladies Génétiques de L’Enfant et de L’Adulte, Département Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, University Montpellier, Montpellier, France
| | - Caroline Deiller
- Equipe Maladies Génétiques de L’Enfant et de L’Adulte, Département Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, University Montpellier, Montpellier, France
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, Nantes, France
- Institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, Nantes, France
- Institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Marie Vincent
- CHU Nantes, Service de Génétique Médicale, Nantes, France
- Institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Isidor
- CHU Nantes, Service de Génétique Médicale, Nantes, France
- Institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Jeanne Amiel
- Equipe “Embryologie et Génétiques des Malformations Congénitales", Institut Imagine—INSERM U1163, Institut des Maladies Génétiques, Paris, France
- Service de Génétique Médicale et Clinique, Hôpital Necker-Enfants Malades, Paris, France
| | - Rodolphe Dard
- Unité Fonctionnelle de Génétique Médicale, Cytogénétique, Génétique Médicale et Biologie de La Reproduction, Centre Hospitalier Intercommunal Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Manon Godin
- Service de Génétique, CHU Caen Clemenceau, EA 7450 Biotargen, University Caen, Caen, France
| | - Nicolas Gruchy
- Service de Génétique, CHU Caen Clemenceau, EA 7450 Biotargen, University Caen, Caen, France
| | - Médéric Jeanne
- Service de Génétique, CHU de Tours, Tours, France
- UMR 1253, IBrain, Université de Tours, Inserm, Tours, France
| | - Elise Schaeffer
- Service de Génétique Médicale, CHU de Strasbourg—Hôpital de Hautepierre, Strasbourg, France
| | - Pierre-Yves Maillard
- Service de Génétique Médicale, CHU de Strasbourg—Hôpital de Hautepierre, Strasbourg, France
| | - Frédérique Payet
- Service de Génétique Médicale, Pôle Femme, Mère, Enfants CHU de La Réunion—GH Sud Réunion—Saint-Pierre, Saint-Pierre, France
| | - Marie-Line Jacquemont
- Service de Génétique Médicale, Pôle Femme, Mère, Enfants CHU de La Réunion—GH Sud Réunion—Saint-Pierre, Saint-Pierre, France
| | - Christine Francannet
- Service de Génétique Médicale, Pôle Femme et Enfant, CHU de Clermont-Ferrand—Hôpital D'Estaing, Clermont-Ferrand, France
| | - Sabine Sigaudy
- Unité de Génétique Clinique Prénatale, Département de Génétique Médicale, CHU de Marseille—Hôpital de La Timone, Marseille, France
| | - Marine Bergot
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
| | | | - Marie-Laure Ascencio
- Centre D'Investigation Clinique CIC-EC Inserm CIC1432, UFR des Sciences de Santé, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Christine Binquet
- Centre D'Investigation Clinique CIC-EC Inserm CIC1432, UFR des Sciences de Santé, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Yannis Duffourd
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
| | - Laurence Faivre
- INSERM UMR1231 GAD, F-21000, Dijon, France
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR1231 GAD, F-21000, Dijon, France
- Centre de Référence Maladies Rares “Anomalies Du Développement et Syndromes Malformatifs”, Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
12
|
Fu F, Li R, Yu Q, Wang D, Deng Q, Li L, Lei T, Chen G, Nie Z, Yang X, Han J, Pan M, Zhen L, Zhang Y, Jing X, Li F, Li F, Zhang L, Yi C, Li Y, Lu Y, Zhou H, Cheng K, Li J, Xiang L, Zhang J, Tang S, Fang P, Li D, Liao C. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med 2022; 14:123. [PMID: 36307859 PMCID: PMC9615232 DOI: 10.1186/s13073-022-01130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background Exome sequencing (ES) is becoming more widely available in prenatal diagnosis. However, data on its clinical utility and integration into clinical management remain limited in practice. Herein, we report our experience implementing prenatal ES (pES) in a large cohort of fetuses with anomalies detected by ultrasonography using a hospital-based in-house multidisciplinary team (MDT) facilitated by a three-step genotype-driven followed by phenotype-driven analysis framework. Methods We performed pES in 1618 fetal cases with positive ultrasound findings but negative for karyotyping and chromosome microarray analysis between January 2014 and October 2021, including both retrospective (n=565) and prospective (n=1053) cohorts. The diagnostic efficiency and its correlation to organ systems involved, phenotypic spectrum, and the clinical impacts of pES results on pregnancy outcomes were analyzed. Results A genotype-driven followed by phenotype-driven three-step approach was carried out in all trio pES. Step 1, a genotype-driven analysis resulted in a diagnostic rate of 11.6% (187/1618). Step 2, a phenotype-driven comprehensive analysis yielded additional diagnostic findings for another 28 cases (1.7%; 28/1618). In the final step 3, data reanalyses based on new phenotypes and/or clinical requests found molecular diagnosis in 14 additional cases (0.9%; 14/1618). Altogether, 229 fetal cases (14.2%) received a molecular diagnosis, with a higher positive rate in the retrospective than the prospective cohort (17.3% vs. 12.4%, p<0.01). The diagnostic rates were highest in fetuses with skeletal anomalies (30.4%) and multiple organ involvements (25.9%), and lowest in fetuses with chest anomalies (0%). In addition, incidental and secondary findings with childhood-onset disorders were detected in 11 (0.7%) cases. Furthermore, we described the prenatal phenotypes for the first time for 27 gene-associated conditions (20.0%, 27/135) upon a systematic analysis of the diagnosed cases and expanded the phenotype spectrum for 26 (19.3%) genes where limited fetal phenotypic information was available. In the prospective cohort, the combined prenatal ultrasound and pES results had significantly impacted the clinical decisions (61.5%, 648/1053). Conclusions The genotype-driven approach could identify about 81.7% positive cases (11.6% of the total cohort) with the initial limited fetal phenotype information considered. The following two steps of phenotype-driven analysis and data reanalyses helped us find the causative variants in an additional 2.6% of the entire cohort (18.3% of all positive findings). Our extensive phenotype analysis on a large number of molecularly confirmed prenatal cases had greatly enriched our current knowledge on fetal phenotype-genotype correlation, which may guide more focused prenatal ultrasound in the future. This is by far the largest pES cohort study that combines a robust trio sequence data analysis, systematic phenotype-genotype correlation, and well-established MDT in a single prenatal clinical setting. This work underlines the value of pES as an essential component in prenatal diagnosis in guiding medical management and parental decision making. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01130-x.
Collapse
|
13
|
Li M, Fu H, Li J, Meng D, Zhang Q, Fei D. Compound variants of FKTN, POMGNT1, and LAMB1 gene identified by prenatal whole-exome sequencing in three fetuses with congenital hydrocephalus. J Obstet Gynaecol Res 2022; 48:2624-2629. [PMID: 35843586 PMCID: PMC9796612 DOI: 10.1111/jog.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 01/14/2023]
Abstract
Congenital hydrocephalus (CH) is a severe birth defect, and genetics components is an important etiology. Whole-exome sequencing (WES) has been proven to be a feasible approach for prenatal diagnosis of CH. In this study, we carried out WES on three fetuses with cerebral ventriculomegaly. After bioinformation analysis and data filtering, three compound variants, c.919C>T(p.Arg307Ter)/c.1100del(p.Phe369fs) in FKTN, c.1449_1450insACAACG/c.1490G>C(p.Arg497Pro) in POMGNT1, and c.2690+1G>A/c.1447C>T(p.Arg483Cys) in LAMB1 were detected in the three fetuses. All the six variants were classified as likely pathogenic or pathogenic in accordance with the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. This study provides support for the potential of WES for the accurate prenatal diagnosis of fetal hydrocephalus and further demonstrated the genetic heterogeneity in patients with CH. The novel variants (c.1449_1450insACAACG and c.1490G>C in POMGNT1, c.2690+1G>A in LAMB1) expanded the gene mutational spectrum of CH and contributes to genetics counseling and pregnancy management.
Collapse
Affiliation(s)
- Meng Li
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China,Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Huayu Fu
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China,Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Jiao Li
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China,Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Dahua Meng
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China,Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Qiang Zhang
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China,Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Dongmei Fei
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China,Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| |
Collapse
|
14
|
Saini N, Venkatapuram VS, Vineeth VS, Kulkarni A, Tandon A, Koppolu G, Patil SJ, Dalal A, Aggarwal S. Fetal phenotypes of Mendelian disorders: A descriptive study from India. Prenat Diagn 2022; 42:911-926. [PMID: 35587316 DOI: 10.1002/pd.6172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Exome sequencing(ES) based diagnosis of Mendelian diseases in the fetus is limited by paucity of phenotypic information. This study reports the comprehensive phenotypes of some fetuses with Mendelian disorders. METHODS Next generation technology based sequencing of all coding regions of the genome(Exome sequencing) or targeted gene sequencing using Sanger or next generation platforms was performed in a cohort of deeply phenotyped, cytogenetically normal fetuses with morphological defects. Prenatal ultrasonographic phenotypes and Postmortem details including dysmorphology, histopathology, radiography were ascertained. Novel candidate genes, novel/ unusual findings and unusual genotypes in cases with confirmed Mendelian disorders are described. RESULTS Of the 102 fetuses sequenced, 45 (44%) achieved definitive diagnosis of a Mendelian disorder with 50 pathogenic/likely pathogenic variants. The majority (87%) were autosomal recessive, 69% families were consanguineous and 54% variants were novel. Dysmorphic syndromes, skeletal dysplasias and metabolic disorders were the commonest disease categories, ciliopathies and dystroglycanopathies commonest molecular categories. We describe the first fetal description of six monogenic diseases, and nine cases with novel histological findings. Nineteen cases had novel/ unusual findings. CONCLUSION This cohort demonstrates how deep fetal phenotypes of some Mendelian disorders can show novel/unusual findings which have important implications for prenatal diagnosis of these conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neelam Saini
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | | | | | - Ashwani Tandon
- Department of Pathology, All India Institute of Medical Sciences, Bhopal, India
| | | | - Siddaramappa Jagdish Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| |
Collapse
|
15
|
Chandler NJ, Scotchman E, Mellis R, Ramachandran V, Roberts R, Chitty LS. Lessons learnt from prenatal exome sequencing. Prenat Diagn 2022; 42:831-844. [PMID: 35506549 PMCID: PMC9325487 DOI: 10.1002/pd.6165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 12/27/2022]
Abstract
Background Prenatal exome sequencing (ES) for monogenic disorders in fetuses with structural anomalies increases diagnostic yield. In England there is a national trio ES service delivered from two laboratories. To minimise incidental findings and reduce the number of variants investigated, analysis uses a panel of 1205 genes where pathogenic variants may cause abnormalities presenting prenatally. Here we review our laboratory's early experience developing and delivering ES to identify challenges in interpretation and reporting and inform service development. Methods A retrospective laboratory records review from 01.04.2020 to 31.05.2021. Results Twenty‐four of 116 completed cases were identified as challenging including 13 resulting in difficulties in analysis and reporting, nine where trio inheritance filtering would have missed the diagnosis, and two with no prenatal diagnosis; one due to inadequate pipeline sensitivity, the other because the gene was not on the panel. Two cases with copy number variants identified were not detectable by microarray. Conclusions Variant interpretation requires close communication between referring clinicians, with occasional additional examination of the fetus or parents and communication of evolving phenotypes. Inheritance filtering misses ∼5% of diagnoses. Panel analysis reduces but does not exclude incidental findings. Regular review of published literature is required to identify new reports that may aid classification.
What's already known about this topic?
Prenatal exome sequencing (ES) for monogenic disorders in fetuses with structural anomalies is known to increase diagnostic yield Diagnostic prenatal ES services are being embedded into clinical practice internationally
What does this study add?
This study identifies challenges encountered running a diagnostic prenatal ES service including those in variant interpretation and reporting, incidental findings and ethical issues It demonstrates that solely relying on trio inheritance filtering will miss ∼5% of diagnoses Close communication between scientists and referring clinicians is essential to identify evolving phenotypes Regular review of published literature is required to identify new reports that may alter variant classification
Collapse
Affiliation(s)
- Natalie J Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rhiannon Mellis
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Vijaya Ramachandran
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rowenna Roberts
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
16
|
Chen G, Xiong S, Zou G, Wu F, Qu X, Alawbathani S, Sun L. A 6.3 Mb maternally derived microduplication of 20p13p12.2 in a fetus with Brachydactyly type D and related literature review. Mol Cytogenet 2022; 15:6. [PMID: 35227291 PMCID: PMC8887085 DOI: 10.1186/s13039-022-00584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
With the introduction of genetic tests such as chromosomal microarray analysis (CMA) and exome sequencing (ES) into fetal medical practices, genotype–phenotype correlations in intrauterine-onset disorders have substantially improved. The BMP2 gene, located on the long arm of chromosome 20 plays a role in bone and cartilage development and is associated with Brachydactyly type A2, an autosomal dominant disease characterized by malformations of the middle phalanx of the index finger and abnormalities of the second toe. However, the BMP2 gene has so far never been reported as a candidate gene for Brachydactyly type D (BDD) affecting only the thumbs.
Methods and
results
Here, we report one family possessing a maternally inherited 6.3 Mb microduplication of 20p13p12.2 including the BMP2 gene with discordant phenotypes between the mother and the fetus. The mother was affected with BDD alongside mild facial dysmorphism and learning difficulties, while the female fetus showed BDD, severe symmetric intrauterine growth restriction combined with oligohydramnios. The CMA and Trio ES tests were implemented. Trio ES ruled out other possible monogenic causes for the family. After reviewing cases and literature with duplications within this genomic region, we found that they are extremely rare and most of the cited cases were too small for comparison. The disturbance of the BMP2 gene could explain BDD, but the other clinical presentations in the mother and fetus are not yet fully understood.
Conclusion
This study provides important evidence for the current understanding of genotype–phenotype association of this 6.3 Mb size duplication in the 20p13p12.2 region. This duplication is a unique CNV occurring so far only in this family. Further cases and research are needed to understand the discordance in the phenotypes between the mother and fetus and establish the relationship between BMP2 gene and BDD.
Collapse
|
17
|
Mellis R, Oprych K, Scotchman E, Hill M, Chitty LS. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat Diagn 2022; 42:662-685. [PMID: 35170059 PMCID: PMC9325531 DOI: 10.1002/pd.6115] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022]
Abstract
Objectives We conducted a systematic review and meta‐analysis to determine the diagnostic yield of exome sequencing (ES) for prenatal diagnosis of fetal structural anomalies, where karyotype/chromosomal microarray (CMA) is normal. Methods Following electronic searches of four databases, we included studies with ≥10 structurally abnormal fetuses undergoing ES or whole genome sequencing. The incremental diagnostic yield of ES over CMA/karyotype was calculated and pooled in a meta‐analysis. Sub‐group analyses investigated effects of case selection and fetal phenotype on diagnostic yield. Results We identified 72 reports from 66 studies, representing 4350 fetuses. The pooled incremental yield of ES was 31% (95% confidence interval (CI) 26%–36%, p < 0.0001). Diagnostic yield was significantly higher for cases pre‐selected for likelihood of monogenic aetiology compared to unselected cases (42% vs. 15%, p < 0.0001). Diagnostic yield differed significantly between phenotypic sub‐groups, ranging from 53% (95% CI 42%–63%, p < 0.0001) for isolated skeletal abnormalities, to 2% (95% CI 0%–5%, p = 0.04) for isolated increased nuchal translucency. Conclusion Prenatal ES provides a diagnosis in an additional 31% of structurally abnormal fetuses when CMA/karyotype is non‐diagnostic. The expected diagnostic yield depends on the body system(s) affected and can be optimised by pre‐selection of cases following multi‐disciplinary review to determine that a monogenic cause is likely.
What's already known about this topic?
Prenatal exome sequencing (ES) increases genetic diagnoses in fetuses with structural abnormalities and a normal karyotype and chromosomal microarray. Published diagnostic yields from ES are varied and may be influenced by study size, case selection and fetal phenotype.
What does this study add?
This study provides a comprehensive systematic review of the literature to date and investigates the diagnostic yield of ES for a range of isolated system anomalies, to support clinical decision‐making on how to offer prenatal ES.
Collapse
Affiliation(s)
- Rhiannon Mellis
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Elizabeth Scotchman
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Melissa Hill
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Lyn S Chitty
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
18
|
Correa ARE, Naini K, Mishra P, Dadhwal V, Agarwal R, Shukla R, Kabra M, Gupta N. Utility of fetal whole exome sequencing in the etiological evaluation and outcome of nonimmune hydrops fetalis. Prenat Diagn 2021; 41:1414-1424. [PMID: 34302381 DOI: 10.1002/pd.6022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Nonimmune hydrops fetalis (NIHF) has varied etiology. We assessed the etiological spectrum and evaluated the utility of fetal whole exome sequencing (fWES) for the diagnosis of NIHF. METHODS In this prospective cohort study, we evaluated antenatally diagnosed fetuses with NIHF between July 2018 and December 2019 according to the routine diagnostic algorithm. Fetuses that remained undiagnosed after routine NIHF workup were subjected to fetal chromosomal microarray and/or WES. Pregnancies were followed up for clinical outcomes. RESULTS Of the 45 fetuses, consanguinity and recurrent hydrops fetalis were observed in 13.3% (6/45) and 28.8% (13/45), respectively. Overall, an etiological diagnosis was possible in 75.5% (34/45) of fetuses, while the cause remained unknown in 24.4% (11/45). A genetic etiology was identified in 46.6% (21/45): aneuploidy and monogenic disorders in 28.8% (13/45) and 17.8% (8/45), respectively. fWES on 19 fetuses detected disease-causing variants in 42.1% (8/19). Nine novel variants were detected in RAPSN, ASCC1, NEB, PKD1L1, GUSB, and PIEZO1. Only 8.8% (4/45) of the cohort survived without morbidity. CONCLUSIONS This study describes the etiological spectrum and the disease-causing variants in an Indian cohort of hydropic fetuses.
Collapse
Affiliation(s)
- Alec Reginald Errol Correa
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Kamal Naini
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Pallavi Mishra
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Vatsla Dadhwal
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Agarwal
- Department of Pediatrics, Division of Neonatology, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmi Shukla
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Zhang X, Ren Y, Song R, Wang L, Xu H, Xie X, Zhou H, Sun P, Zhang M, Zhao Q, You Y, Gao Z, Meng Y, Lu Y. Combined exome sequencing and deep phenotyping in highly selected fetuses with skeletal dysplasia during the first and second trimesters improves diagnostic yield. Prenat Diagn 2021; 41:1401-1413. [PMID: 34091931 DOI: 10.1002/pd.5974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the genetic etiology of skeletal dysplasia in highly selected fetuses during the first and second trimesters using deep phenotyping and exome sequencing (ES). METHOD Fetuses with short femurs were identified using the established prenatal diagnostic approach. A multidisciplinary team reviewed fetal phenotypic information (prenatal ultrasound findings, fetal postmortem, and radiographs) in a cohort of highly selected fetuses with skeletal dysplasia during the first and second trimesters. The affected families underwent multiplatform genetic tests. RESULTS Of the 27 affected fetuses, 21 (77.8%) had pathogenic or potential pathogenic variations in the following genes: COL1A1, FGFR3, COL2A1, COL1A2, FLNB, DYNC2LI1, and TRIP11. Two fetuses had compound heterozygous mutations in DYNC2LI1 and TRIP11, respectively, and the other 19 carried de novo autosomal dominant variants. Novel variants were identified in COL1A1, COL2A1, COL1A2, DYNC2LI1, and TRIP11 in 11 fetuses. We also included the first description of the phenotype of odontochondrodysplasia in a prenatal setting. CONCLUSIONS ES or panel sequencing offers a high diagnostic yield for fetal skeletal dysplasia during the first and second trimesters. Comprehensive and complete phenotypic information is indispensable for genetic analysis and the expansion of genotype-phenotype correlations in fetal skeletal abnormalities.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuan Ren
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui Song
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Longxia Wang
- Department of Ultrasound, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Xu
- Department of Ultrasound, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoxiao Xie
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honghui Zhou
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Sun
- Beijing Genomics Institution, Beijing, China
| | - Manli Zhang
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Qingdong Zhao
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanqin You
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiying Gao
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanping Lu
- Department of Obstetrics and Gynecology, 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The current review seeks to provide a comprehensive update on the revolutionary technology of whole exome sequencing (WES) which has been used to interrogate abnormal foetal phenotypes since the last few years, and is changing the paradigms of prenatal diagnosis, facilitating accurate genetic diagnosis and optimal management of pregnancies affected with foetal abnormalities, as well enabling delineation of novel Mendelian disorders. RECENT FINDINGS WES has contributed to identification of more than 1000 Mendelian genes and made rapid strides into clinical diagnostics in recent years. Diagnostic yield of WES in postnatal cohorts has ranged from 25 to 50%, and this test is now a first tier investigation for various clinical presentations. Various abnormal perinatal phenotypes have also been investigated using WES since 2014, with diagnostic yields ranging from 8.5 to 80%. Studies in foetal phenotypes have been challenging and guidelines in this cohort are still evolving. SUMMARY WES has proven to be a disrupting technology, enabling genetic diagnosis for pregnancies complicated by previously unexplained foetal abnormalities, and revealing a significant contribution of single gene disorders in these, thereby changing clinical diagnostic paradigms. The application of this technology in perinatal cohorts is also providing interesting insights into single gene defects presenting as previously unknown genetic syndromes, hence contributing to expansion of Mendelian genetics to encompass various foetal phenotypes.
Collapse
|
21
|
Beyond diagnostic yield: prenatal exome sequencing results in maternal, neonatal, and familial clinical management changes. Genet Med 2021; 23:909-917. [PMID: 33442022 PMCID: PMC7804210 DOI: 10.1038/s41436-020-01067-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Previous studies have reported that prenatal exome sequencing (pES) can detect monogenic diseases in fetuses with congenital anomalies with diagnostic yields ranging from 6% to 81%, but there are few reports of its clinical utility. Methods We conducted a retrospective chart review of patients who had pES to determine whether results led to clinical management changes. Results Of 20 patients, 8 (40%) received a definitive diagnosis. Seven patients (35%) had medical management changes based on the pES results, including alterations to their delivery plan and neonatal management (such as use of targeted medications, subspecialty referrals, additional imaging and/or procedures). All patients who received a definitive diagnosis and one who received a likely pathogenic variant (n = 9; 45%) received specific counseling about recurrence risk and the medical/developmental prognosis for the baby. In five (25%) cases, the result facilitated a diagnosis in parents and/or siblings. Conclusion pES results can have significant impacts on clinical management, some of which would not be possible if testing is deferred until after birth. To maximize the clinical utility, pES should be prioritized in cases where multiple care options are available and the imaging findings alone are not sufficient to guide parental decision-making, or where postnatal testing will not be feasible.
Collapse
|