1
|
Duyzend M, Sud M, D'Gama AM, Poorvu T, Estroff J, Wojcik MH. Going Back in Time: Prenatal Presentations of Postnatal Genetic Diagnoses Made in a Neonatal Intensive Care Unit. Prenat Diagn 2024. [PMID: 39638574 DOI: 10.1002/pd.6710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Prenatal genetic diagnosis can impact care across the perinatal continuum; however, prenatal suspicion for genetic disorders may be complicated by incomplete knowledge of fetal rare-disease phenotypes. Here, we describe the prenatal presentations of a cohort of infants with rare genetic conditions who were diagnosed postnatally in a neonatal intensive care unit (NICU), to characterize prenatal presenting features and evaluate why the diagnosis was not identified prenatally. METHODS Retrospective cohort study of infants born over a 7 year period (2017-2023) who were admitted to a Level IV NICU and received a postnatal genetic diagnosis prior to 1 year of age. We identified which of these infants had been imaged prenatally at our Maternal Fetal Care Center (MFCC) as an opportunity for prenatal genetic diagnosis. Clinical data were abstracted from the medical records. RESULTS 51 cases met the inclusion criteria. Nine of the 51 infants were not strongly suspected to have a genetic syndrome prenatally when seen at the MFCC, as evidenced by lack of prenatal genetic consultation and lack of documented suspicion for a genetic etiology. These cases largely had absent or uncertain prenatal phenotypes. In most cases (42/51, 82.4%), prenatal diagnostic testing was not pursued even if offered. Overall, postnatal diagnoses, of which there was one dual diagnosis, were made by karyotype/FISH (11/52, 21.1%), microarray (8/52, 15.4%), gene panel/targeted testing (17/52, 32.7%), or exome sequencing (16/52, 30.8%). CONCLUSIONS Our data illustrate the challenges in fetal phenotyping and support a broad approach to prenatal testing to facilitate early genetic diagnosis, which may meaningfully impact postnatal care.
Collapse
Affiliation(s)
- Michael Duyzend
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Malika Sud
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alissa M D'Gama
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tabitha Poorvu
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Judy Estroff
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Monica H Wojcik
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Shreeve N, Sproule C, Choy KW, Dong Z, Gajewska-Knapik K, Kilby MD, Mone F. Incremental yield of whole-genome sequencing over chromosomal microarray analysis and exome sequencing for congenital anomalies in prenatal period and infancy: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:15-23. [PMID: 37725747 DOI: 10.1002/uog.27491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES First, to determine the incremental yield of whole-genome sequencing (WGS) over quantitative fluorescence polymerase chain reaction (QF-PCR)/chromosomal microarray analysis (CMA) with and without exome sequencing (ES) in fetuses, neonates and infants with a congenital anomaly that was or could have been detected on prenatal ultrasound. Second, to evaluate the turnaround time (TAT) and quantity of DNA required for testing using these pathways. METHODS This review was registered prospectively in December 2022. Ovid MEDLINE, EMBASE, MEDLINE (Web of Science), The Cochrane Library and ClinicalTrials.gov databases were searched electronically (January 2010 to December 2022). Inclusion criteria were cohort studies including three or more fetuses, neonates or infants with (i) one or more congenital anomalies; (ii) an anomaly which was or would have been detectable on prenatal ultrasound; and (iii) negative QF-PCR and CMA. In instances in which the CMA result was unavailable, all cases of causative pathogenic copy number variants > 50 kb were excluded, as these would have been detectable on standard prenatal CMA. Pooled incremental yield was determined using a random-effects model and heterogeneity was assessed using Higgins' I2 test. Subanalyses were performed based on pre- or postnatal cohorts, cases with multisystem anomalies and those meeting the NHS England prenatal ES inclusion criteria. RESULTS A total of 18 studies incorporating 902 eligible cases were included, of which eight (44.4%) studies focused on prenatal cohorts, incorporating 755 cases, and the remaining studies focused on fetuses undergoing postmortem testing or neonates/infants with congenital structural anomalies, constituting the postnatal cohort. The incremental yield of WGS over QF-PCR/CMA was 26% (95% CI, 18-36%) (I2 = 86%), 16% (95% CI, 9-24%) (I2 = 85%) and 39% (95% CI, 27-51%) (I2 = 53%) for all, prenatal and postnatal cases, respectively. The incremental yield increased in cases in which sequencing was performed in line with the NHS England prenatal ES criteria (32% (95% CI, 22-42%); I2 = 70%) and in those with multisystem anomalies (30% (95% CI, 19-43%); I2 = 65%). The incremental yield of WGS for variants of uncertain significance (VUS) was 18% (95% CI, 7-33%) (I2 = 74%). The incremental yield of WGS over QF-PCR/CMA and ES was 1% (95% CI, 0-4%) (I2 = 47%). The pooled median TAT of WGS was 18 (range, 1-912) days, and the quantity of DNA required was 100 ± 0 ng for WGS and 350 ± 50 ng for QF-PCR/CMA and ES (P = 0.03). CONCLUSION While WGS in cases with congenital anomaly holds great promise, its incremental yield over ES is yet to be demonstrated. However, the laboratory pathway for WGS requires less DNA with a potentially faster TAT compared with sequential QF-PCR/CMA and ES. There was a relatively high rate of VUS using WGS. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N Shreeve
- Department of Obstetrics & Gynaecology, University of Cambridge, Cambridge, UK
| | - C Sproule
- Department of Obstetrics & Gynaecology, South Eastern Health and Social Care Trust, Belfast, UK
| | - K W Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Z Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - K Gajewska-Knapik
- Department of Obstetrics & Gynaecology, Cambridge University Hospitals, Cambridge, UK
| | - M D Kilby
- Fetal Medicine Centre, Birmingham Women's and Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - F Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Van den Veyver IB. Prenatal exomes and genomes - so much new and so much more to learn. Prenat Diagn 2022; 42:659-661. [PMID: 35583086 PMCID: PMC11222010 DOI: 10.1002/pd.6152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology and Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX
| |
Collapse
|