1
|
Zhou EM, Shen H, Wang D, Xu W. Incidence and risk factors of systemic lupus erythematosus in patients with primary immune thrombocytopenia: a systematic review and meta-analysis. PeerJ 2024; 12:e17152. [PMID: 38666084 PMCID: PMC11044880 DOI: 10.7717/peerj.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024] Open
Abstract
Background Immune disorders and autoantibodies has been noted in both primary immune thrombocytopenia (ITP) and systemic lupus erythematosus (SLE). Whether the two disorders are correlated is unclear. The lack of evidence on the incidence of and risk factors for SLE in primary ITP patients poses a challenge for prediction in clinical practice. Therefore, we conducted this study. Methods The protocol was registered with PROSPERO (CRD42023403665). Web of Science, Cochrane, PubMed, and EMBASE were searched for articles published from inception to 30 September 2023 on patients who were first diagnosed with primary ITP and subsequently developed into SLE. Furthermore, the risk factors were analyzed. Study quality was estimated using the Newcastle-Ottawa Scale. The statistical process was implemented using the R language. Results This systematic review included eight articles. The incidence of SLE during the follow-up after ITP diagnosis was 2.7% (95% CI [1.3-4.4%]), with an incidence of 4.6% (95% CI [1.6-8.6%]) in females and 0 (95% CI [0.00-0.4%]) in males. Older age (OR = 6.31; 95% CI [1.11-34.91]), positive antinuclear antibody (ANA) (OR = 6.64; 95% CI [1.40-31.50]), hypocomplementemia (OR = 8.33; 95% CI [1.62-42.91]), chronic ITP (OR = 24.67; 95% CI [3.14-100.00]), organ bleeding (OR = 13.67; 95% CI [2.44-76.69]), and female (OR = 20.50; 95% CI [4.94-84.90]) were risk factors for subsequent SLE in ITP patients. Conclusion Patients with primary ITP are at higher risk of SLE. Specific follow-up and prevention strategies should be tailored especially for older females with positive ANA, hypocomplementemia, or chronic ITP. In subsequent studies, we need to further investigate the risk factors and try to construct corresponding risk prediction models to develop specific prediction strategies for SLE.
Collapse
Affiliation(s)
- En-min Zhou
- Department of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Heping Shen
- Department of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Di Wang
- Department of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiqun Xu
- Department of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
2
|
Chaaban A, Salman Z, Karam L, Kobeissy PH, Ibrahim JN. Updates on the role of epigenetics in familial mediterranean fever (FMF). Orphanet J Rare Dis 2024; 19:90. [PMID: 38409042 PMCID: PMC10898143 DOI: 10.1186/s13023-024-03098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is an autosomal recessive autoinflammatory disease caused by mutations in the MEFV (MEditerranean FeVer) gene that affects people originating from the Mediterranean Sea. The high variability in severity and clinical manifestations observed not only between ethnic groups but also between and within families is mainly related to MEFV allelic heterogeneity and to some modifying genes. In addition to the genetic factors underlying FMF, the environment plays a significant role in the development and manifestation of this disease through various epigenetic mechanisms, including DNA methylation, histone modification, and noncoding RNAs. Indeed, epigenetic events have been identified as an important pathophysiological determinant of FMF and co-factors shaping the clinical picture and outcome of the disease. Therefore, it is essential to better understand the contribution of epigenetic factors to autoinflammatory diseases, namely, FMF, to improve disease prognosis and potentially develop effective targeted therapies. In this review, we highlight the latest updates on the role of epigenetics in FMF.
Collapse
Affiliation(s)
- Ahlam Chaaban
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Zeina Salman
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Louna Karam
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Philippe Hussein Kobeissy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - José-Noel Ibrahim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
3
|
Tovo PA, Galliano I, Parodi E, Calvi C, Gambarino S, Licciardi F, Dini M, Montanari P, Branca M, Ramenghi U, Bergallo M. Children with Chronic Immune Thrombocytopenia Exhibit High Expression of Human Endogenous Retroviruses TRIM28 and SETDB1. Genes (Basel) 2023; 14:1569. [PMID: 37628621 PMCID: PMC10454145 DOI: 10.3390/genes14081569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic immune thrombocytopenia (CITP) is an autoimmune disease whose underlying biologic mechanisms remain elusive. Human endogenous retroviruses (HERVs) derive from ancestral infections and constitute about 8% of our genome. A wealth of clinical and experimental studies highlights their pivotal pathogenetic role in autoimmune diseases. Epigenetic mechanisms, such as those modulated by TRIM28 and SETDB1, are involved in HERV activation and regulation of immune response. We assessed, through a polymerase chain reaction real-time Taqman amplification assay, the transcription levels of pol genes of HERV-H, HERV-K, and HERV-W; env genes of Syncytin (SYN)1, SYN2, and HERV-W; as well as TRIM28 and SETDB1 in whole blood from 34 children with CITP and age-matched healthy controls (HC). The transcriptional levels of all HERV sequences, with the exception of HERV-W-env, were significantly enhanced in children with CITP as compared to HC. Patients on eltrombopag treatment exhibited lower expression of SYN1, SYN2, and HERV-W-env as compared to untreated patients. The mRNA concentrations of TRIM28 and SETDB1 were significantly higher and were positively correlated with those of HERVs in CITP patients. The over-expressions of HERVs and TRIM28/SETDB1 and their positive correlations in patients with CITP are suggestive clues of their contribution to the pathogenesis of the disease and support innovative interventions to inhibit HERV and TRIM28/SETDB1 expressions in patients unresponsive to standard therapies.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (P.-A.T.); (U.R.)
| | - Ilaria Galliano
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Emilia Parodi
- Pediatric and Neonatology Unit, Ordine Mauriziano Hospital, Largo Filippo Turati 62, 10128 Turin, Italy;
| | - Cristina Calvi
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Francesco Licciardi
- Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy;
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Paola Montanari
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Margherita Branca
- Postgraduate School of Pediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (P.-A.T.); (U.R.)
- Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy;
- Postgraduate School of Pediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Massimiliano Bergallo
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| |
Collapse
|
4
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|