Kobayashi T, Saito H. Structural Evolution of Two-Phase Blends of Polycarbonate and PMMA by Simultaneous Biaxial Stretching.
Polymers (Basel) 2018;
10:E950. [PMID:
30960875 PMCID:
PMC6404030 DOI:
10.3390/polym10090950]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
We investigated the structural evolution of the two-phase blends of polycarbonate (PC) and poly(methyl methacrylate) (PMMA) at various blend compositions by simultaneous biaxial stretching, using optical microscopy and SEM observation. The spherical PMMA domains and PC matrix of 30/70 PC/PMMA were enlarged uniformly at the all in-plane direction, while the anisotropic-shaped co-continuous structure in 50/50 PC/PMMA was deformed to a crosshatched structure by the in-plane bimodal orientation. In 70/30 PC/PMMA, the phase inversion was found to occur by simultaneous biaxial stretching; that is, the spherical PMMA domains were changed to a crosshatched matrix by the in-plane bimodal orientation due to coalescence of the PMMA domains during the stretching. Owing to the phase inversion, the surface hardness estimated by the pencil hardness test became harder, from 2B to 2H, increasing the strain from 1.0 to 2.0.
Collapse