1
|
de Macêdo Neto JC, de Freitas BM, de Miranda AG, de Almeida Rodrigues R, Del Pino GG, Kieling AC, Dos Santos MD, Duvoisin Junior S, Sanches AE, Gondres Torné I, Silva CC, da Costa JCM, Bello RH. The Stability and Properties of Polystyrene/Kaolinite Nanocomposites during Synthesis via Emulsion Polymerization. Polymers (Basel) 2023; 15:polym15092094. [PMID: 37177240 PMCID: PMC10180905 DOI: 10.3390/polym15092094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this work was to study the stability and morphological properties of polystyrene latex containing kaolinite as a filler during the process of synthesis of nanocomposites viaemulsion polymerization. Nanocomposites with 1, 3, and 5 wt% of kaolinite were prepared. Latexes with 1 to 3 wt% of kaolinite were stable during the polymerization reaction. Hydrodynamic diameters of 93.68 and 82.11 nm were found for latexes with 1 and 3 wt% of kaolinite, respectively. The quantities of 1 to 3 wt% of kaolinite added during the reaction did not influence the reaction conversion curves or the number of particles. X-ray diffraction (XRD) and unconventional techniques of scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) showed the presence of exfoliated and intercalated structures of the kaolinite.
Collapse
Affiliation(s)
- José Costa de Macêdo Neto
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Bruno Mello de Freitas
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Adalberto Gomes de Miranda
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Reinaldo de Almeida Rodrigues
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Gilberto Garcia Del Pino
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Antônio Claudio Kieling
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Marcos Dantas Dos Santos
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Sergio Duvoisin Junior
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Antônio Estanislau Sanches
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Israel Gondres Torné
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Cláudia Cândida Silva
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - João Carlos Martins da Costa
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| | - Roger Hoel Bello
- Department of Materials Engineering, School of Engineering, Amazonas State University, Avenida Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69850-000, AM, Brazil
| |
Collapse
|
3
|
Zengeni E, Hartmann PC, Pasch H. Encapsulation of clay by ad-miniemulsion polymerization: the influence of clay size and modifier reactivity on latex morphology and physical properties. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6957-6968. [PMID: 23138445 DOI: 10.1021/am302110c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The influence of clay platelet size and type of organic modifier (reactive or nonreactive) on highly filled hybrid latex morphology and physical properties of the resultant polymer/clay nanocomposites (PCNs) were investigated. The hybrid latexes, containing clay loadings between 30 and 50 wt % clay, were prepared using ad-miniemulsion polymerization. These materials have potential use in the packaging and coating industry since clay platelets are well-known for barrier property improvements. Comparative studies on the use of montmorillonite (MMT), a large clay platelet (average size: 50-500 nm), and Laponite (Lap), small-sized clay platelets (average size: 25-40 nm), were conducted. Two different clay modifiers were used to modify the clays, i.e., a conventional nonreactive modifier (cetyltrimethylammonium bromide (CTAB)) and a reactive modifier (vinylbenzyldodecyldimethylammonium chloride (VBDAC)). Transmission electron microscopy (TEM) imaging of the hybrid latexes clearly showed strong morphological dependency on both the type of modifier and the clay platelet size. Furthermore, TEM together with small-angle X-ray scattering (SAXS) showed that the extent of clay exfoliation was strongly dependent on the reactivity of the clay modifier, irrespective of the clay platelet size. Both the type of modifier and clay platelets size were found to have an influence on different physical properties of the resultant PCNs. The influence of clay size was clearly indicated by storage modulus and thermal stability behaviors, while that of the clay modifier was indicated by the T(g). Lap-based PCNs exhibited constant or increasing storage modulus and no change in thermal stability with increasing clay content, while MMT-based PCNs showed a decreasing trend in both storage modulus and thermal stability. PCNs based on clay modified with CTAB showed a decreasing T(g) with increasing clay content, while those based on clay modified with VBDAC showed an increasing trend. It was concluded that the clay platelet size and the type of modifier play a crucial part of both the latex morphology and the physical properties of the resultant PCNs.
Collapse
Affiliation(s)
- Eddson Zengeni
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | |
Collapse
|