1
|
Ren X, He Z, Wang Z, Pan Z, Qi Y, Han S, Yu H, Liu J. Design, Synthesis and Properties of Semi-Alicyclic Colorless and Transparent Polyimide Films with High Glass Transition Temperatures and Low Retardation for Potential Applications in Flexible Electronics. Polymers (Basel) 2023; 15:3408. [PMID: 37631465 PMCID: PMC10459071 DOI: 10.3390/polym15163408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Polyimide (PI) optical films with high glass transition temperatures (high-Tg), high optical transparency, and low optical retardations (low-Rth) are highly desired in advanced optoelectronic applications. However, the standard PI films usually suffer from deep colors, high optical anisotropies and limited Tg values. In the current work, a series of semi-alicyclic colorless and transparent PI (CPI) films were developed from hydrogenated pyromellitic dianhydride stereoisomers, 1S,2R,4S,5R-hydrogenated pyromellitic dianhydride and 1R,2S,4S,5R-hydrogenated pyromellitic dianhydride, and fluorene-containing diamines, including 9,9-bis(4-aminophenyl)fluorene and 9,9-bis(3-fluoro-4-aminophenyl)fluorene, respectively. The derived CPI films showed Tg values higher than 420 °C according to differential scanning calorimetry measurements. In addition, the fluorene-based CPI film showed optical transmittances higher than 80% at the wavelength of 400 nm, with yellow indices in the range of 0.60~1.01 and haze values below 3.0%. The CPI films showed average refractive indices from 1.5407 to 1.6309, extremely low birefringence at the level of minus fourth power of ten, and further exhibited quite low optical retardations below 10 nm.
Collapse
Affiliation(s)
- Xi Ren
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.R.); (Z.W.); (Z.P.); (Y.Q.); (S.H.)
| | - Zhibin He
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China; (Z.H.); (H.Y.)
| | - Zhenzhong Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.R.); (Z.W.); (Z.P.); (Y.Q.); (S.H.)
| | - Zhen Pan
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.R.); (Z.W.); (Z.P.); (Y.Q.); (S.H.)
| | - Yuexin Qi
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.R.); (Z.W.); (Z.P.); (Y.Q.); (S.H.)
| | - Shujun Han
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.R.); (Z.W.); (Z.P.); (Y.Q.); (S.H.)
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China; (Z.H.); (H.Y.)
| | - Jingang Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (X.R.); (Z.W.); (Z.P.); (Y.Q.); (S.H.)
| |
Collapse
|