1
|
Wang Q, Liu S, Chen W, Ni Y, Zeng S, Chen P, Xu Y, Nie W, Zhou Y. Strong, bacteriostatic and transparent polylactic acid-based composites by incorporating quaternary ammonium cellulose nanocrystals. Int J Biol Macromol 2024; 274:132645. [PMID: 38917581 DOI: 10.1016/j.ijbiomac.2024.132645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Renewable natural fibers (e.g., cellulose nanocrystals (CNCs)) are being applied for reinforcing bio-based polylactic acid (PLA). For improvement in the interfacial compatibility between CNCs and PLA and the dispersibility of CNCs, a quaternary ammonium salt-coated CNCs (Q-CNCs) hybrid was prepared in this study based on an esterification self-polymerization method, and such hybrid was further utilized as a new strengthening/toughening nanofiller for producing the Q-CNCs-reinforced PLA composite. The results confirmed that quaternary ammonium salt coatings could efficiently enhance CNCs/PLA interfacial compatibility via mechanical interlocking and semi-interpenetrating networks. Attributing to the synergistic effect of quaternary ammonium salts and CNCs, a considerable enhancement in processing, mechanical, and thermal properties was gained in the obtained Q-CNCs-reinforced PLA composite. With the addition of 0.5 wt% Q-CNCs, the tensile strength, Young's modulus, and elongation at break of the Q-CNCs-reinforced PLA composite was raised by approximately 23 %, 37 % and 18 %, respectively; compared with pure PLA, the obtained composite had excellent bacteriostatic properties and good transparency. This work discusses the development of high-performance, low-cost and sustainable PLA-based composites on a potential application in packaging materials.
Collapse
Affiliation(s)
- Qiming Wang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Shuang Liu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wenjian Chen
- Department of Orthopedics, Anhui Provincial Children's Hospital, Hefei 230053, China
| | - Yongbiao Ni
- Jiangsu Provincial Product Quality Supervision and Inspection Institute, Nanjing 210007, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
2
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
3
|
Romani VP, Martins VG, Silva AS, Martins PC, Nogueira D, Carbonera N. Amazon‐sustainable‐flour from açaí seeds added to starch films to develop biopolymers for active food packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.51579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viviane P. Romani
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Brazil
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Vilásia G. Martins
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Ayla S. Silva
- Biocatalysis Laboratory, Catalysis, Biocatalysis and Chemical Processes Division National Institute of Technology, Ministry of Science, Technology, and Innovations Rio de Janeiro Brazil
| | - Paola C. Martins
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Daiane Nogueira
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Nádia Carbonera
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Brazil
| |
Collapse
|
4
|
A Review: Research Progress in Modification of Poly (Lactic Acid) by Lignin and Cellulose. Polymers (Basel) 2021; 13:polym13050776. [PMID: 33802505 PMCID: PMC7959458 DOI: 10.3390/polym13050776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted.
Collapse
|
5
|
Prakash A, Lata R, Martens PJ, Rohindra D. Characterization and
in‐vitro
analysis of poly(ε‐caprolactone)‐“Jackfruit” Mucilage blends for tissue engineering applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anshu Prakash
- School of Biological and Chemical Sciences, Faculty of Science Technology and Environment The University of the South Pacific Suva Fiji
| | - Roselyn Lata
- School of Biological and Chemical Sciences, Faculty of Science Technology and Environment The University of the South Pacific Suva Fiji
| | - Penny J. Martens
- Graduate School of Biomedical Engineering UNSW Sydney (The University of New South Wales) Sydney Australia
| | - David Rohindra
- School of Biological and Chemical Sciences, Faculty of Science Technology and Environment The University of the South Pacific Suva Fiji
| |
Collapse
|
6
|
Fernandes SS, Romani VP, Silva Filipini G, Martins V. Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sibele S. Fernandes
- Laboratory of Food Technology, School of Chemistry and FoodFederal University of Rio Grande Rio Grande RS Brazil
| | - Viviane Patrícia Romani
- Laboratory of Food Technology, School of Chemistry and FoodFederal University of Rio Grande Rio Grande RS Brazil
| | - Gabriel Silva Filipini
- Laboratory of Food Technology, School of Chemistry and FoodFederal University of Rio Grande Rio Grande RS Brazil
| | - Vilásia Martins
- Laboratory of Food Technology, School of Chemistry and FoodFederal University of Rio Grande Rio Grande RS Brazil
| |
Collapse
|