1
|
Chen Z, Zhang Y, Zhao J, Mo Y, Liu S. Imparting low dielectric constant and high toughness to polyimide via physical blending with trifluoropropyl polyhedral oligomeric silsesquioxane. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhigeng Chen
- College of Chemistry and Environment Engineering Hanshan Normal University Chaozhou Guangdong China
- School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Ying Zhang
- College of Chemistry and Environment Engineering Hanshan Normal University Chaozhou Guangdong China
| | - Jianqing Zhao
- School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Yueqi Mo
- School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Shumei Liu
- School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
2
|
Pan XF, Wu B, Gao HL, Chen SM, Zhu Y, Zhou L, Wu H, Yu SH. Double-Layer Nacre-Inspired Polyimide-Mica Nanocomposite Films with Excellent Mechanical Stability for LEO Environmental Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105299. [PMID: 34802169 DOI: 10.1002/adma.202105299] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Owing to their outstanding comprehensive performance, polyimide (PI) composite films are widely used on the external surfaces of spacecraft to protect them from the adverse conditions of low Earth orbit (LEO). However, current PI composite films have inadequate mechanical properties and atomic oxygen (AO) resistance. Herein, this work fabricates a new PI-based nanocomposite film with greatly enhanced mechanical properties and AO resistance by integrating mica nanosheets with PI into a unique double-layer nacre-inspired structure with a much higher density of mica nanosheets in the top layer. In addition, the unique microstructure and the intrinsic properties of mica also impart the nanocomposite film with favorable ultraviolet and high-temperature resistance. The comprehensive performance of this material is superior to those of pure PI, single-layer PI-mica, and previously reported PI-based composite films. Thus, the double-layer nanocomposite film displays great potential as an aerospace material for use in LEO.
Collapse
Affiliation(s)
- Xiao-Feng Pan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Bao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Huai-Ling Gao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Ming Chen
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - LiChuan Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Tang H, Sun M, Wang C. 2D Silicate Materials for Composite Polymer Electrolytes. Chem Asian J 2021; 16:2842-2851. [PMID: 34379351 DOI: 10.1002/asia.202100838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) silicate materials have become one of the promising candidates for constructing composite polymer electrolytes due to their advantages of low cost, high stability, good mechanical property, high ionic conductivity and potential to inhibit the growth of lithium dendrites. However, the application of 2D silicate materials in composite polymer electrolytes (CPEs) is still at the infancy stage and facing a lot of challenges. In this minireview, we summarize the structures and properties of 2D silicate materials that have been applied in CPEs, the processing methods of composite electrolytes based on 2D silicates, and the recent process of 2D silicate materials in CPEs. We hope this review could present a general overview of the 2D silicates for CPEs and promote the further study for potential applications.
Collapse
Affiliation(s)
- Hui Tang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingxuan Sun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Taraghi I, Paszkiewicz S, Irska I, Szymczyk A, Linares A, Ezquerra TA, Kurcz M, Winkowska‐Struzik M, Lipińska L, Kowiorski K, Piesowicz E. Thin polymer films based on poly(vinyl alcohol) containing graphene oxide and reduced graphene oxide with functional properties. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Iman Taraghi
- Department of Materials Technologies West Pomeranian University of Technology Szczecin Poland
| | - Sandra Paszkiewicz
- Department of Materials Technologies West Pomeranian University of Technology Szczecin Poland
| | - Izabela Irska
- Department of Materials Technologies West Pomeranian University of Technology Szczecin Poland
| | - Anna Szymczyk
- Department of Physics West Pomeranian University of Technology Szczecin Poland
| | - Amelia Linares
- Macromolecular Physics Department Instituto de Estructura de la Materia, IEM‐CSIC Madrid Spain
| | - Tiberio A. Ezquerra
- Macromolecular Physics Department Instituto de Estructura de la Materia, IEM‐CSIC Madrid Spain
| | - Magdalena Kurcz
- Department of Chemical Synthesis and Flake Graphene Institute of Electronic Materials Technology Warsaw Poland
| | - Magdalena Winkowska‐Struzik
- Department of Chemical Synthesis and Flake Graphene Institute of Electronic Materials Technology Warsaw Poland
| | - Ludwika Lipińska
- Department of Chemical Synthesis and Flake Graphene Institute of Electronic Materials Technology Warsaw Poland
| | - Krystian Kowiorski
- Department of Chemical Synthesis and Flake Graphene Institute of Electronic Materials Technology Warsaw Poland
| | - Elżbieta Piesowicz
- Department of Materials Technologies West Pomeranian University of Technology Szczecin Poland
| |
Collapse
|