1
|
Wang X, Zhang X, Yang X, Guo X, Liu Y, Li Y, Ding Z, Teng Y, Hou S, Shi J, Lv Q. An Antibacterial and Antiadhesion In Situ Forming Hydrogel with Sol-Spray System for Noncompressible Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:662-676. [PMID: 36562696 DOI: 10.1021/acsami.2c19662] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noncompressible hemorrhage is a major cause of posttrauma death and occupies the leading position among potentially preventable trauma-associated deaths. Recently, multiple studies have shown that strongly adhesive materials can serve as hemostatic materials for noncompressible hemorrhage. However, the risk of severe tissue adhesion limits the use of adhesive hydrogels as hemostatic materials. Here, we report a promising material system comprising an injectable sol and liquid spray as a potential solution. Injectable sol is mainly composed of gelatin (GEL) and sodium alginate (SA), which possess hemostasis and adhesive properties. The liquid spray component, a mixture of tannic acid (TA) and calcium chloride (CaCl2), rapidly forms an antibacterial, antiadhesive and smooth film structure upon contact with the sol. In vitro and in vivo experiments demonstrated the bioabsorbable, biocompatible, antibacterial, and antiadhesion properties of the in situ forming hydrogel with a sol-spray system. Importantly, the addition of tranexamic acid (TXA) enhanced hemostatic performance in noncompressible areas and in deep wound hemorrhage. Our study offers a new multifunctional hydrogel system to achieve noncompressible hemostasis.
Collapse
Affiliation(s)
- Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xin Zhang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanqing Liu
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yongmao Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Ziling Ding
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| |
Collapse
|
2
|
Ma H, Qin W, Guo B, Li P. Effect of plant tannin and glycerol on thermoplastic starch: Mechanical, structural, antimicrobial and biodegradable properties. Carbohydr Polym 2022; 295:119869. [DOI: 10.1016/j.carbpol.2022.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
|