1
|
Werner J, Umstätter F, Böhmann MB, Müller H, Beijer B, Hertlein T, Kaschnitz L, Bram V, Kleist C, Klika KD, Mühlberg E, Braune G, Wohlfart S, Gärtner M, Peter S, Zimmermann S, Haberkorn U, Ohlsen K, Brötz-Oesterhelt H, Mier W, Uhl P. Conjugation of Polycationic Peptides Extends the Efficacy Spectrum of β-Lactam Antibiotics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411406. [PMID: 39499737 DOI: 10.1002/advs.202411406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Antibiotic-resistant enterococci represent a significant global health challenge. Unfortunately, most β-lactam antibiotics are not applicable for enterococcal infections due to intrinsic resistance. To extend their antimicrobial spectrum, polycationic peptides are conjugated to examples from each of the four classes of β-lactam antibiotics. Remarkably, the β-lactam-peptide conjugates gained an up to 1000-fold increase in antimicrobial activity against vancomycin-susceptible and vancomycin-resistant enterococci. Even against β-lactam-resistant Gram-negative strains, the conjugates are found to be effective despite their size exceeding the exclusion volume of porins. The extraordinary gain of activity can be explained by an altered mode of killing. Of note, the conjugates showed a concentration-dependent activity in contrast to the parent β-lactam antibiotics that exhibited a time-dependent mode of action. In comparison to the parent β-lactams, the conjugates showed altered affinities to the penicillin-binding proteins. Furthermore, it is found that peptide conjugation also resulted in a different elimination route of the compounds when administered to rodents. In mice systemically infected with vancomycin-resistant enterococci, treatment with a β-lactam-peptide conjugate reduced bacterial burden in the liver compared to its originator. Therefore, peptide modification of β-lactam antibiotics represents a promising platform strategy to broaden their efficacy spectrum, particularly against enterococci.
Collapse
Affiliation(s)
- Julia Werner
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Manuel B Böhmann
- Department of Pharmaceutical Technology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| | - Hannah Müller
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Kaschnitz
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Veronika Bram
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Karel D Klika
- NMR Spectroscopy Analysis Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Eric Mühlberg
- Department of Pharmaceutical Technology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| | - Gabriel Braune
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Sabrina Wohlfart
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Martin Gärtner
- Department of Pharmaceutical and Bioorganic Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| | - Silke Peter
- Medical Microbiology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Heike Brötz-Oesterhelt
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Philipp Uhl
- Department of Pharmaceutical Technology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
3
|
Hosseini Goki N, Saberi MR, Amin M, Fazly Bazzaz BS, Khameneh B. Novel antimicrobial peptides based on Protegrin-1: In silico and in vitro assessments. Microb Pathog 2024; 196:106931. [PMID: 39288825 DOI: 10.1016/j.micpath.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The development of antibiotic resistance has caused significant health problems. Antimicrobial peptides (AMPs) are considered next-generation antibiotics. Protegrin-1 (PG-1) is a β-hairpin AMP with a membrane-binding capacity. This study used twelve PG-1 analogs with different amino acid substitutions. Coarse-grained molecular dynamics (MD) simulations were used to assess these analogs, and their physicochemical properties were computed using the Antimicrobial Peptide Database. Three AMPs, PEP-D, PEP-C, and PEP-H, were chosen and synthesized for antibacterial testing. The microbroth dilution technique and hemolytic assays evaluated the antimicrobial efficacy and cellular toxicity. The checkerboard method was used to test the combined activity of AMP and standard antibiotics. Cell membrane permeability and electron microscopy were used to evaluate the mode of action. The chemical stability of the selective AMP, PEP-D, was assessed by a validated HPLC method. PEP-D consists of 16-18 amino acid residues and has a charge of +7 and a hydrophobicity of 44 %, similar to PG-1. It can efficiently inactivate bacteria by disrupting cell membranes and significantly reducing hemolytic activity. Chemical stability studies indicated that AMP was stable at 40 °C for six months under autoclave conditions. This study could introduce the potential therapeutic application of selective AMP as an anti-infective agent.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
5
|
Chen P, Ye T, Li C, Praveen P, Hu Z, Li W, Shang C. Embracing the era of antimicrobial peptides with marine organisms. Nat Prod Rep 2024; 41:331-346. [PMID: 37743806 DOI: 10.1039/d3np00031a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covering: 2018 to Jun of 2023The efficiency of traditional antibiotics has been undermined by the proliferation of antibiotic-resistant pathogenic microorganisms, necessitating the pursuit of innovative therapeutic agents. Antimicrobial peptides (AMPs), which are part of host defence peptides found ubiquitously in nature, exhibiting a wide range of activity towards bacteria, fungi, and viruses, offer a highly promising candidate solution. The efficacy of AMPs can frequently be augmented via alterations to their amino acid sequences or structural adjustments. Given the vast reservoir of marine life forms and their distinctive ecosystems, marine AMPs stand as a burgeoning focal point in the quest for alternative peptide templates extracted from natural sources. Advances in identification and characterization techniques have accelerated the discoveries of marine AMPs, thereby stimulating AMP customization, optimization, and synthesis research endeavours. This review presents an overview of recent discoveries related to the intriguing qualities of marine AMPs. Emphasis will be placed upon post-translational modifications (PTMs) of marine AMPs and how they may impact functionality and potency. Additionally, this review considers ways in which marine PTM might support larger-scale, heterologous AMP manufacturing initiatives, providing insights into translational applications of these important biomolecules.
Collapse
Affiliation(s)
- Pengyu Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chunyuan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Chen S, Qian Y, Wan D, Li Y, Zhou C. Synthesis and Synergistic Antimicrobial Efficacy of Covalent Conjugates Composed of Epsilon-Poly-l-lysine and Beta-Lactam Antibiotics. ACS APPLIED BIO MATERIALS 2024; 7:1990-1999. [PMID: 38363728 DOI: 10.1021/acsabm.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The increasing severity of problems posed by drug-resistant pathogens has compelled researchers to explore innovative approaches for infection prevention. Among these strategies, conjugation methods stand out for their convenience and high efficacy. In this study, multiple covalent conjugates were synthesized, incorporating the natural antimicrobial peptide epsilon-poly-l-lysine (EPL) and two commonly used β-lactam antibiotics: penicillin G or ampicillin. Enhanced antimicrobial efficacy against typical Gram-negative pathogens, along with faster kill kinetics compared to combination approaches, was demonstrated by the EPL-Ampicillin covalent conjugates. Their antimicrobial mechanism was also substantiated through SEM and fluorescence tests in this work, confirming the inheritance of membrane-disrupting properties from EPL. Furthermore, the excellent biocompatibility of the raw materials was reserved in the covalent conjugates. This simplified conjugation method holds promise for the development of infection therapeutic drugs and potentially restores the sensitivity of conventional antibiotics to drug-resistant pathogens by introducing membrane-disrupting mechanisms.
Collapse
Affiliation(s)
- Sijin Chen
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yusheng Qian
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Decheng Wan
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yan Li
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chuncai Zhou
- School of Material Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
7
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
8
|
Pereira AFM, Sani AA, Zapata TB, de Sousa DSM, Rossini BC, dos Santos LD, Rall VLM, Riccardi CDS, Fernandes Júnior A. Synergistic Antibacterial Efficacy of Melittin in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA). Microorganisms 2023; 11:2868. [PMID: 38138012 PMCID: PMC10745785 DOI: 10.3390/microorganisms11122868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) often cause infections with high mortality rates. Antimicrobial peptides are a source of molecules for developing antimicrobials; one such peptide is melittin, a fraction from the venom of the Apis mellifera bee. This study aimed to evaluate the antibacterial and antibiofilm activities of melittin and its association with oxacillin (mel+oxa) against MRSA isolates, and to investigate the mechanisms of action of the treatments on MRSA. Minimum inhibitory concentrations (MICs) were determined, and synergistic effects of melittin with oxacillin and cephalothin were assessed. Antibiofilm and cytotoxic activities, as well as their impact on the cell membrane, were evaluated for melittin, oxacillin, and mel+oxa. Proteomics evaluated the effects of the treatments on MRSA. Melittin mean MICs for MRSA was 4.7 μg/mL and 12 μg/mL for oxacillin. Mel+oxa exhibited synergistic effects, reducing biofilm formation, and causing leakage of proteins, nucleic acids, potassium, and phosphate ions, indicating action on cell membrane. Melittin and mel+oxa, at MIC values, did not induce hemolysis and apoptosis in HaCaT cells. The treatments resulted in differential expression of proteins associated with protein synthesis and energy metabolism. Mel+oxa demonstrated antibacterial activity against MRSA, suggesting a potential as a candidate for the development of new antibacterial agents against MRSA.
Collapse
Affiliation(s)
- Ana Flávia Marques Pereira
- The Center for the Study of Venoms and Venomous Animals of UNESP (CEVAP), São Paulo State University (UNESP), Botucatu 18619-002, São Paulo, Brazil;
| | - Alessandra Aguirra Sani
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Tatiane Baptista Zapata
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Débora Silva Marques de Sousa
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Bruno César Rossini
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, São Paulo, Brazil; (B.C.R.); (L.D.d.S.)
| | - Lucilene Delazari dos Santos
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, São Paulo, Brazil; (B.C.R.); (L.D.d.S.)
- Graduate Program in Tropical Diseases and Graduate Program in Research and Development (Medical Biotechnology), Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Carla dos Santos Riccardi
- Department of Bioprocesses and Biotechnology, Faculty of Agricultural Sciences (FCA), São Paulo State University (UNESP), Botucatu 18610-034, São Paulo, Brazil;
| | - Ary Fernandes Júnior
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| |
Collapse
|
9
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
10
|
Papaioannou A, Liakopoulou A, Papoulis D, Gianni E, Gkolfi P, Zygouri E, Letsiou S, Hatziantoniou S. Effect of Peptides on the Synthesis, Properties and Wound Healing Capacity of Silver Nanoparticles. Pharmaceutics 2023; 15:2471. [PMID: 37896231 PMCID: PMC10609782 DOI: 10.3390/pharmaceutics15102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study is the synthesis of novel peptide-silver nanoparticle conjugates with enhanced wound healing capacity. Peptide-silver nanoparticle conjugates were synthesized using myristoyl tetrapeptide 6 (MT6) or copper tripeptide 1 (CuTP1). Peptide-free silver nanoparticles (AgNP) were synthesized using NaBH4 and sodium citrate and were used as control. The addition of the peptides during or after the synthesis of nanoparticles and its impact on the properties of the synthesized peptide-silver nanoparticle conjugates were assessed. The monitoring of the synthesis of nanoparticles was achieved using ultraviolet-visible spectrophotometry (UV-/Vis). The characteristics and colloidal stability of the nanoparticles (size and ζ-potential distribution, morphology, composition and structure) were monitored using dynamic laser scattering (DLS), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). The wound healing capacity of the peptide-silver nanoparticle conjugates was assessed using scratch test assay on fibroblasts (NIH/3T3). The results indicated that the addition of the peptides during the synthesis of nanoparticles lead to better yield of the reaction and more effective capping while the size distribution and ζ-potential of the conjugates indicated long-term colloidal stability. The MT6-AgNP conjugate exhibited 71.97 ± 4.35% wound closure, which was about 5.48-fold higher (p < 0.05) than the corresponding free MT6. The CuTP1-AgNP conjugate exhibited 62.37 ± 18.33% wound closure that was better by 2.82 fold (p < 0.05) compared to the corresponding free CuTP1. Both peptides led to the synthesis of silver nanoparticle conjugates with enhanced wound healing capacity compared to the respective free peptide or to the peptide-free AgNP (29.53 ± 4.71% wound closure, p < 0.05). Our findings demonstrated that the synthetized peptide-silver nanoparticle conjugates are promising ingredients for wound care formulation.
Collapse
Affiliation(s)
- Afroditi Papaioannou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (A.P.); (A.L.)
| | - Angeliki Liakopoulou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (A.P.); (A.L.)
| | - Dimitris Papoulis
- Department of Geology, University of Patras, 26504 Patras, Greece; (D.P.); (E.G.)
| | - Eleni Gianni
- Department of Geology, University of Patras, 26504 Patras, Greece; (D.P.); (E.G.)
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 15125 Athens, Greece
| | - Patroula Gkolfi
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (P.G.); (E.Z.)
| | - Eleni Zygouri
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (P.G.); (E.Z.)
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Agiou Spyridonos 28, 12243 Aegaleo, Greece;
| | - Sophia Hatziantoniou
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (A.P.); (A.L.)
| |
Collapse
|
11
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
12
|
Yamauchi R, Kawano K, Yamaoka Y, Taniguchi A, Yano Y, Takasu K, Matsuzaki K. Development of Antimicrobial Peptide-Antibiotic Conjugates to Improve the Outer Membrane Permeability of Antibiotics Against Gram-Negative Bacteria. ACS Infect Dis 2022; 8:2339-2347. [PMID: 36255133 DOI: 10.1021/acsinfecdis.2c00406] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotics have been widely used in the medical field as a treatment for infectious diseases, but they are not effective against all Gram-negative bacteria because of their low permeability to the outer membrane. One of the strategies to improve the antibacterial activity of antibiotics is the coadministration of antibiotics and membrane-perturbing antimicrobial peptides for their synergistic effects. However, because of their different pharmacokinetics, their coadministration may not exert expected effects in the clinical stage. Here, we designed various antimicrobial peptide-antibiotic conjugates as a novel approach to improve the antimicrobial activity of antibiotics. Ampicillin was chosen as a model antibiotic with poor outer membrane permeability, and the effects of the chemistry and position of conjugation and the choice of antimicrobial peptides were examined. One of the ampicillin conjugates exhibited significantly improved antimicrobial activity against ampicillin-resistant Gram-negative bacteria without exerting cytotoxicity against human cultured cells, demonstrating that our novel approach is an effective strategy to improve the antimicrobial activity of antibiotics with low outer membrane permeability.
Collapse
Affiliation(s)
- Ruka Yamauchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Aoi Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.,School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
14
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
15
|
High Level Expression and Purification of Cecropin-like Antimicrobial Peptides in Escherichia coli. Biomedicines 2022; 10:biomedicines10061351. [PMID: 35740373 PMCID: PMC9220022 DOI: 10.3390/biomedicines10061351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cecropins are a family of antimicrobial peptides (AMPs) that are widely found in the innate immune system of Cecropia moths. Cecropins exhibit a broad spectrum of antimicrobial and anticancer activities. The structures of Cecropins are composed of 34–39 amino acids with an N-terminal amphipathic α-helix, an AGP hinge and a hydrophobic C-terminal α-helix. KR12AGPWR6 was designed based on the Cecropin-like structural feature. In addition to its antimicrobial activities, KR12AGPWR6 also possesses enhanced salt resistance, antiendotoxin and anticancer properties. Herein, we have developed a strategy to produce recombinant KR12AGPWR6 through a salt-sensitive, pH and temperature dependent intein self-cleavage system. The His6-Intein-KR12AGPWR6 was expressed by E. coli and KR12AGPWR6 was released by the self-cleavage of intein under optimized ionic strength, pH and temperature conditions. The molecular weight and structural feature of the recombinant KR12AGPWR6 was determined by MALDI-TOF mass, CD, and NMR spectroscopy. The recombinant KR12AGPWR6 exhibited similar antimicrobial activities compared to the chemically synthesized KR12AGPWR6. Our results provide a potential strategy to obtain large quantities of AMPs and this method is feasible and easy to scale up for commercial production.
Collapse
|
16
|
Li W, Hadjigol S, Mazo AR, Holden J, Lenzo J, Shirbin SJ, Barlow A, Shabani S, Huang T, Reynolds EC, Qiao GG, O'Brien-Simpson NM. Star-Peptide Polymers are Multi-Drug-Resistant Gram-Positive Bacteria Killers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25025-25041. [PMID: 35500245 DOI: 10.1021/acsami.1c23734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance in bacteria, especially Gram-positive bacteria like Staphylococcus aureus, is gaining considerable momentum worldwide and unless checked will pose a global health crisis. With few new antibiotics coming on the market, there is a need for novel antimicrobial materials that target and kill multi-drug-resistant (MDR) Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). In this study, using a novel mixed-bacteria antimicrobial assay, we show that the star-peptide polymers preferentially target and kill Gram-positive pathogens including MRSA. A major effect on the activity of the star-peptide polymer was structure, with an eight-armed structure inducing the greatest bactericidal activity. The different star-peptide polymer structures were found to induce different mechanisms of bacterial death both in vitro and in vivo. These results highlight the potential utility of peptide/polymers to fabricate materials for therapeutic development against MDR Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Wenyi Li
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sara Hadjigol
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alicia Rasines Mazo
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James Holden
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason Lenzo
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven J Shirbin
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anders Barlow
- Materials Characterisation and Fabrication Platform, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sadegh Shabani
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Huang
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric C Reynolds
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Cheah YH, Liu CY, Yip BS, Wu CL, Peng KL, Cheng JW. Strategy to Enhance Anticancer Activity and Induced Immunogenic Cell Death of Antimicrobial Peptides by Using Non-Nature Amino Acid Substitutions. Biomedicines 2022; 10:biomedicines10051097. [PMID: 35625834 PMCID: PMC9138567 DOI: 10.3390/biomedicines10051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
There is an urgent and imminent need to develop new agents to fight against cancer. In addition to the antimicrobial and anti-inflammatory activities, many antimicrobial peptides can bind to and lyse cancer cells. P-113, a 12-amino acid clinically active histatin-rich peptide, was found to possess anti-Candida activities but showed poor anticancer activity. Herein, anticancer activities and induced immunogenic cancer cell death of phenylalanine-(Phe-P-113), β-naphthylalanine-(Nal-P-113), β-diphenylalanine-(Dip-P-113), and β-(4,4′-biphenyl)alanine-(Bip-P-113) substituted P-113 were studied. Among these peptides, Nal-P-113 demonstrated the best anticancer activity and caused cancer cells to release potent danger-associated molecular patterns (DAMPs), such as reactive oxygen species (ROS), cytochrome c, ATP, and high-mobility group box 1 (HMGB1). These results could help in developing antimicrobial peptides with better anticancer activity and induced immunogenic cell death in therapeutic applications.
Collapse
Affiliation(s)
- Yu-Huan Cheah
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Chun-Yu Liu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Bak-Sau Yip
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Kuang-Li Peng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Jya-Wei Cheng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Correspondence: ; Tel.: +886-3-5742763; Fax: +886-3-5715934
| |
Collapse
|
18
|
Alzahrani NM, Booq RY, Aldossary AM, Bakr AA, Almughem FA, Alfahad AJ, Alsharif WK, Jarallah SJ, Alharbi WS, Alsudir SA, Alyamani EJ, Tawfik EA, Alshehri AA. Liposome-Encapsulated Tobramycin and IDR-1018 Peptide Mediated Biofilm Disruption and Enhanced Antimicrobial Activity against Pseudomonas aeruginosa. Pharmaceutics 2022; 14:960. [PMID: 35631547 PMCID: PMC9144307 DOI: 10.3390/pharmaceutics14050960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
The inadequate eradication of pulmonary infections and chronic inflammation are significant complications in cystic fibrosis (CF) patients, who usually suffer from persistent and frequent lung infections caused by several pathogens, particularly Pseudomonas aeruginosa (P. aeruginosa). The ability of pathogenic microbes to protect themselves from biofilms leads to the development of an innate immune response and antibiotic resistance. In the present work, a reference bacterial strain of P. aeruginosa (PA01) and a multidrug-resistant isolate (MDR 7067) were used to explore the microbial susceptibility to three antibiotics (ceftazidime, imipenem, and tobramycin) and an anti-biofilm peptide (IDR-1018 peptide) using the minimum inhibition concentration (MIC). The most effective antibiotic was then encapsulated into liposomal nanoparticles and the IDR-1018 peptide with antibacterial activity, and the ability to disrupt the produced biofilm against PA01 and MDR 7067 was assessed. The MIC evaluation of the tobramycin antibacterial activity showed an insignificant effect on the liposomes loaded with tobramycin and liposomes encapsulating tobramycin and IDR-1018 against both P. aeruginosa strains to free tobramycin. Nevertheless, the biofilm formation was significantly reduced (p < 0.05) at concentrations of ≥4 μg/mL and ≤32 μg/mL for PA01 and ≤32 μg/mL for MDR 7067 when loading tobramycin into liposomes, with or without the anti-biofilm peptide compared to the free antibiotic, empty liposomes, and IDR-1018-loaded liposomes. A tobramycin concentration of ≤256 µg/mL was safe when exposed to a lung carcinoma cell line upon its encapsulation into the liposomal formulation. Tobramycin-loaded liposomes could be a potential candidate for treating lung-infected animal models owing to the high therapeutic efficacy and safety profile of this system compared to the free administration of the antibiotic.
Collapse
Affiliation(s)
- Nouf M. Alzahrani
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Rayan Y. Booq
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Abrar A. Bakr
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Fahad A. Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Ahmed J. Alfahad
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Wijdan K. Alsharif
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Somayah J. Jarallah
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samar A. Alsudir
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Essam J. Alyamani
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| | - Abdullah A. Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.M.A.); (R.Y.B.); (A.M.A.); (A.A.B.); (F.A.A.); (A.J.A.); (W.K.A.); (S.J.J.); (S.A.A.); (E.J.A.)
| |
Collapse
|
19
|
Lin B, Hung A, Li R, Barlow A, Singleton W, Matthyssen T, Sani MA, Hossain MA, Wade JD, O'Brien-Simpson NM, Li W. Systematic comparison of activity and mechanism of antimicrobial peptides against nosocomial pathogens. Eur J Med Chem 2022; 231:114135. [DOI: 10.1016/j.ejmech.2022.114135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
|
20
|
Li W, Lin F, Hung A, Barlow A, Sani MA, Paolini R, Singleton W, Holden J, Hossain MA, Separovic F, O'Brien-Simpson NM, Wade JD. Enhancing proline-rich antimicrobial peptide action by homodimerization: influence of bifunctional linker. Chem Sci 2022; 13:2226-2237. [PMID: 35310489 PMCID: PMC8864714 DOI: 10.1039/d1sc05662j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/16/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are host defense peptides, and unlike conventional antibiotics, they possess potent broad spectrum activities and, induce little or no antimicrobial resistance. They are attractive lead molecules for rational development to improve their therapeutic index. Our current studies examined dimerization of the de novo designed proline-rich AMP (PrAMP), Chex1-Arg20 hydrazide, via C-terminal thiol addition to a series of bifunctional benzene or phenyl tethers to determine the effect of orientation of the peptides and linker length on antimicrobial activity. Antibacterial assays confirmed that dimerization per se significantly enhances Chex1-Arg20 hydrazide action. Greatest advantage was conferred using perfluoroaromatic linkers (tetrafluorobenzene and octofluorobiphenyl) with the resulting dimeric peptides 6 and 7 exhibiting potent action against Gram-negative bacteria, especially the World Health Organization's critical priority-listed multidrug-resistant (MDR)/extensively drug-resistant (XDR) Acinetobacter baumannii as well as preformed biofilms. Mode of action studies indicated these lead PrAMPs can interact with both outer and inner bacterial membranes to affect the membrane potential and stress response. Additionally, 6 and 7 possess potent immunomodulatory activity and neutralise inflammation via nitric oxide production in macrophages. Molecular dynamics simulations of adsorption and permeation mechanisms of the PrAMP on a mixed lipid membrane bilayer showed that a rigid, planar tethered dimer orientation, together with the presence of fluorine atoms that provide increased bacterial membrane interaction, is critical for enhanced dimer activity. These findings highlight the advantages of use of such bifunctional tethers to produce first-in-class, potent PrAMP dimers against MDR/XDR bacterial infections.
Collapse
Affiliation(s)
- Wenyi Li
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- Melbourne Dental School, Centre for Oral Health Research Australia
| | - Feng Lin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Australia
| | - Andrew Hung
- School of Science, RMIT University Australia
| | - Anders Barlow
- Materials Characterization and Fabrication Platform Australia
| | - Marc-Antoine Sani
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Rita Paolini
- Melbourne Dental School, Centre for Oral Health Research Australia
| | | | - James Holden
- Melbourne Dental School, Centre for Oral Health Research Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Frances Separovic
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Neil M O'Brien-Simpson
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- Melbourne Dental School, Centre for Oral Health Research Australia
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| |
Collapse
|
21
|
Mann A, Nehra K, Rana J, Dahiya T. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100030. [PMID: 34841321 PMCID: PMC8610298 DOI: 10.1016/j.crmicr.2021.100030] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a massive problem rising constantly and spreading rapidly since the past decade. The major underlying mechanism responsible for this problem is an overuse or severe misuse of antibiotics. Regardless of this emerging global threat, antibiotics are still being widely used, not only for treatment of human infections, but also to a great extent in agriculture, livestock and animal husbandry. If the current scenario persists, we might enter into a post-antibiotic era where drugs might not be able to treat even the simplest of infections. This review discusses the current status of antibiotic utilization and molecular basis of antibiotic resistance mechanisms acquired by bacteria, along with the modes of transmittance of the resultant resistant genes into human pathogens through their cycling among different ecosystems. The main focus of the article is to provide an insight into the different molecular and other strategies currently being studied worldwide for their use as an alternate to antibiotics with an overall aim to overcome or minimize the global problem of antibiotic resistance.
Collapse
|
22
|
Zhang H, Zhu Y, Yang N, Kong Q, Zheng Y, Lv N, Chen H, Yue C, Liu Y, Li J, Ye Y. In vitro and in vivo Activity of Combinations of Polymyxin B with Other Antimicrobials Against Carbapenem-Resistant Acinetobacter baumannii. Infect Drug Resist 2021; 14:4657-4666. [PMID: 34764660 PMCID: PMC8577563 DOI: 10.2147/idr.s334200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To study the in vitro and in vivo antibacterial activities of polymyxin B (PB) and other five antimicrobial agents, including imipenem (IMP), meropenem (MEM), tigecycline (TGC), sulbactam (SUL), and rifampicin (RIF), alone or in combination against carbapenem-resistant Acinetobacter baumannii (CRAB). Methods Microbroth dilution method was used to determine the minimum inhibitory concentration (MIC) of ten strains of CRAB against six antibacterial drugs, and the checkerboard method was used to determine the fractional inhibitory concentration index (FICI). A mouse pneumonia model was established by intranasal instillation of Ab5075 to evaluate the antibacterial activity in vivo. Results The resistance rate of ten CRAB strains to IMP, MEM, and SUL was 100%, that to PB and TGC was 0%, and that to RIF was 20%. When PB was used in combination with the other five antibiotics in vitro, it mainly showed synergistic and additive effects on CRAB. The synergistic effect of PB and RIF was maximal, followed by MEM and IMP but was weak with SUL and TGC. In vivo, compared to the model group (untreated with antibiotics), treatment group (six antibiotics alone and PB combined with the other five antibiotics) reduced the bacterial load in the lung tissue and the serum inflammatory factors (IL-1β, IL-6, and TNF-α). The bacterial load and the inflammatory factors of the combined group decreased significantly than that of the single group (P<0.05). The IL-6 and TNF-α values of the PB combined with the RIF group were significantly lower than the two drugs used individually. Conclusion The combination of PB and IMP, MEM, and RIF exerted robust in vitro synergistic effects on CRAB isolates. The combination of PB and the other five antimicrobial agents had a better effect in the mouse pneumonia model than single agent, while the combination of PB and RIF had the best effect.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yunzhu Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ning Yang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qinxiang Kong
- Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yahong Zheng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Na Lv
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haoran Chen
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chengcheng Yue
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ying Ye
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
23
|
Alhakamy NA, Caruso G, Eid BG, Fahmy UA, Ahmed OAA, Abdel-Naim AB, Alamoudi AJ, Alghamdi SA, Al Sadoun H, Eldakhakhny BM, Caraci F, Abdulaal WH. Ceftriaxone and Melittin Synergistically Promote Wound Healing in Diabetic Rats. Pharmaceutics 2021; 13:1622. [PMID: 34683915 PMCID: PMC8539663 DOI: 10.3390/pharmaceutics13101622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
High glucose levels in diabetic patients are implicated in delay wound healing that could lead to more serious clinical complications. The aim of the present work was to examine the formulation of ceftriaxone (CTX) and melittin (MEL) as nanoconjugate (nanocomplex)-loaded hydroxypropyl methylcellulose (HPMC) (1.5% w/v)-based hydrogel for healing of acute wounds in diabetic rats. The CTX-MEL nanoconjugate, formulated by ion-pairing at different molar ratio, was characterized for size and zeta potential and investigated by transmission electron microscopy. CTX-MEL nanoconjugate was prepared, and its preclinical efficacy evaluated in an in vivo model of acute wound. In particular, the potential ability of the innovative CTX-MEL formulation to modulate wound closure, oxidative status, inflammatory markers, and hydroxyproline was evaluated by ELISA, while the histopathological examination was obtained by using hematoxylin and eosin or Masson's trichrome staining techniques. Quantitative real-time PCR (qRT-PCR) of the excised tissue to measure collagen, type I, alpha 1 (Col1A1) expression and immunohistochemical assessment of vascular endothelial growth factor A (VEGF-A) and transforming growth factor beta 1 (TGF-β1) were also carried out to shed some light on the mechanism of wound healing. Our results show that the CTX-MEL nanocomplex has enhanced ability to regenerate epithelium, also giving better keratinization, epidermal proliferation, and granulation tissue formation, compared to MEL, CTX, or positive control. The nanocomplex also significantly ameliorated the antioxidant status by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) levels. The treatment of wounded skin with the CTX-MEL nanocomplex also showed a significant reduction in interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) pro-inflammatory cytokines combined with a substantial increase in hydroxyproline, VEFG-A, and TGF-β1 protein expression compared to individual components or negative control group. Additionally, the CTX-MEL nanocomplex showed a significant increase in mRNA expression levels of Col1A1 as compared to individual compounds. In conclusion, the ion-pairing nanocomplex of CTX-MEL represents a promising carrier that can be topically applied to improve wound healing.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (U.A.F.); (O.A.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (U.A.F.); (O.A.A.A.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (U.A.F.); (O.A.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Abdulmohsin J. Alamoudi
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Shareefa A. Alghamdi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.A.); (W.H.A.)
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.A.); (W.H.A.)
| |
Collapse
|
24
|
Novel Antimicrobial Peptides from a Cecropin-Like Region of Heteroscorpine-1 from Heterometrus laoticus Venom with Membrane Disruption Activity. Molecules 2021; 26:molecules26195872. [PMID: 34641415 PMCID: PMC8512776 DOI: 10.3390/molecules26195872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The increasing antimicrobial-resistant prevalence has become a severe health problem. It has led to the invention of a new antimicrobial agent such as antimicrobial peptides. Heteroscorpine-1 is an antimicrobial peptide that has the ability to kill many bacterial strains. It consists of 76 amino acid residues with a cecropin-like region in N-terminal and a defensin-like region in the C-terminal. The cecropin-like region from heteroscorpine-1 (CeHS-1) is similar to cecropin B, but it lost its glycine-proline hinge region. The bioinformatics prediction was used to help the designing of mutant peptides. The addition of glycine-proline hinge and positively charged amino acids, the deletion of negatively charged amino acids, and the optimization of the hydrophobicity of the peptide resulted in two mutant peptides, namely, CeHS-1 GP and CeHS-1 GPK. The new mutant peptide showed higher antimicrobial activity than the native peptide without increasing toxicity. The interaction of the peptides with the membrane showed that the peptides were capable of disrupting both the inner and outer bacterial cell membrane. Furthermore, the SEM analysis showed that the peptides created the pore in the bacterial cell membrane resulted in cell membrane disruption. In conclusion, the mutants of CeHS-1 had the potential to develop as novel antimicrobial peptides.
Collapse
|
25
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
26
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
27
|
Jaradat DMM, Al-Karablieh N, Zaarer BHM, Li W, Saleh KKY, Rasras AJ, Abu-Romman S, O'Brien-Simpson NM, Wade JD. Human glucose-dependent insulinotropic polypeptide (GIP) is an antimicrobial adjuvant re-sensitising multidrug-resistant Gram-negative bacteria. Biol Chem 2021; 402:513-524. [PMID: 33938181 DOI: 10.1515/hsz-2020-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 11/15/2022]
Abstract
Increasing antibiotic resistance in Gram-negative bacteria has mandated the development of both novel antibiotics and alternative therapeutic strategies. Evidence of interplay between several gastrointestinal peptides and the gut microbiota led us to investigate potential and broad-spectrum roles for the incretin hormone, human glucose-dependent insulinotropic polypeptide (GIP) against the Enterobacteriaceae bacteria, Escherichia coli and Erwinia amylovora. GIP had a potent disruptive action on drug efflux pumps of the multidrug resistant bacteria E. coli TG1 and E. amylovora 1189 strains. The effect was comparable to bacterial mutants lacking the inner and outer membrane efflux pump factor proteins AcrB and TolC. While GIP was devoid of direct antimicrobial activity, it has a potent membrane depolarizing effect, and at low concentrations, it significantly potentiated the activity of eight antibiotics and bile salt by reducing MICs by 4-8-fold in E. coli TG1 and 4-20-fold in E. amylovora 1189. GIP can thus be regarded as an antimicrobial adjuvant with potential for augmenting the available antibiotic arsenal.
Collapse
Affiliation(s)
- Da'san M M Jaradat
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan
| | - Nehaya Al-Karablieh
- Faculty of Agriculture, Department of Plant Protection, The University of Jordan, Amman, Jordan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan
| | - Basmah H M Zaarer
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan
| | - Wenyi Li
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Khalil K Y Saleh
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan
| | - Anas J Rasras
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan
| | - Saeid Abu-Romman
- Faculty of Agricultural Technology, Department of Biotechnology, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan
| | - Neil M O'Brien-Simpson
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
28
|
|
29
|
Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343-2396. [PMID: 31004359 DOI: 10.1002/med.21588] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has emerged as a huge challenge to the effective treatment of infectious diseases. Aside from a modest number of novel anti-infective agents, very few new classes of antibiotics have been successfully developed for therapeutic use. Despite the research efforts of numerous scientists, the fight against antimicrobial (ATB) resistance has been a longstanding continued effort, as pathogens rapidly adapt and evolve through various strategies, to escape the action of ATBs. Among other mechanisms of resistance to antibiotics, the sophisticated envelopes surrounding microbes especially form a major barrier for almost all anti-infective agents. In addition, the mammalian cell membrane presents another obstacle to the ATBs that target intracellular pathogens. To negotiate these biological membranes, scientists have developed drug delivery systems to help drugs traverse the cell wall; these are called "Trojan horse" strategies. Within these delivery systems, ATB molecules can be conjugated with one of many different types of carriers. These carriers could include any of the following: siderophores, antimicrobial peptides, cell-penetrating peptides, antibodies, or even nanoparticles. In recent years, the Trojan horse-inspired delivery systems have been increasingly reported as efficient strategies to expand the arsenal of therapeutic solutions and/or reinforce the effectiveness of conventional ATBs against drug-resistant microbes, while also minimizing the side effects of these drugs. In this paper, we aim to review and report on the recent progress made in these newly prevalent ATB delivery strategies, within the current context of increasing ATB resistance.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | - Pauline Loupias
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | | | - Pascal Sonnet
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| |
Collapse
|
30
|
Sheard DE, O’Brien-Simpson NM, Wade JD, Separovic F. Combating bacterial resistance by combination of antibiotics with antimicrobial peptides. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The overuse of antibiotics in the healthcare and agricultural industries has led to the worldwide spread of bacterial resistance. The recent emergence of multidrug resistant (MDR) bacteria has resulted in a call for the development of novel strategies to address this global issue. Research on a diverse range of antimicrobial peptides (AMPs) has shown promising activity against several resistant strains. Increased understanding of the mode of action of AMPs has shown similarity and complementarity to conventional antibiotics and the combination of both has led to synergistic effects in some cases. Combination therapy has been widely used to combat MDR bacterial infections and the recent focus on their application with AMPs may allow antibiotics to be effective against resistant bacterial strains. By conjugation of an antibiotic onto an AMP, a compound may be produced with possibly greater activity and with reduced side-effects and toxicity. The AMP in these conjugates may also act as a unique adjuvant for the antibiotic by disrupting the resistance mechanisms used by bacteria thus allowing the antibiotic to once again be effective. This mini-review outlines some of the current and past work in combining AMPs with conventional antibiotics as strategies to address bacterial resistance.
Collapse
Affiliation(s)
- Dean E. Sheard
- School of Chemistry, Bio21 Institute, University of Melbourne , Melbourne, VIC 3010 , Australia
| | - Neil M. O’Brien-Simpson
- Centre of Oral Health Research, Melbourne Dental School, University of Melbourne , Melbourne, VIC 3010 , Australia
| | - John D. Wade
- School of Chemistry, Bio21 Institute, University of Melbourne , Melbourne, VIC 3010 , Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3010 , Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne , Melbourne, VIC 3010 , Australia
| |
Collapse
|