1
|
Shang N, Li X, Zhang L, Wang S, He C, Zhang L, Niu Q, Zheng X. Zinc as a Mediator Through the ROCK1 Pathway of Cognitive Impairment in Aluminum-Exposed Workers: A Clinical and Animal Study. Biol Trace Elem Res 2024; 202:5413-5428. [PMID: 38407795 DOI: 10.1007/s12011-024-04119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Aluminum (Al) exposure was implicated in neurodegenerative diseases and cognitive impairment, yet the involvement of zinc (Zn) and its mechanism in Al-induced mild cognitive impairment (MCI) remains poorly understood. The objective is to explore the role of Zn in Al-induced cognitive impairment and its potential mechanisms. Montreal cognitive assessment (MoCA) test scores and serum Al, Zn from Al industry workers were collected. A mediation analysis was performed to evaluate the role of serum Zn among serum Al and MoCA test scores. Subsequently, an Al-exposure study was conducted on a rat model categorized into control, low-, medium-, and high-dose groups. After a Morris Water Maze test and detection of Al, Zn content in the hippocampus, integrated transcriptomic and proteomic analyses between the control group and the high-dose group were performed to identify the differentially expressed genes (DEPs), proteins (DEPs), and pathways. To corroborate these findings, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) were selected to identify the gene and protein results. Zn overall mediates the relationship between serum Al and cognitive function (mediation effect 17.82%, effect value = - 0.0351). In the Al-exposed rat model, 734 DEGs, 18 miRNAs, 35 lncRNAs, 64 circRNAs, and 113 DEPs were identified between the high-dose group and the control group. Among them, ROCK1, DMD, and other four DEPs were identified as related to zinc finger proteins (ZNF). Co-enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) linked these changes to the RHOA/ROCK1 signaling axis. ZNF-related proteins Rock1, DMD, and DHX57 in the high-dose group were downregulated (p = 0.006, 0.003, 0.04), and the expression of Myl9, Rhoa, miR431, and miR182 was also downregulated (p = 0.003, 0.032, 0.032, and 0.046). These findings also show correlations between Al, Zn levels in the hippocampus, water maze performance, and expressions of Myl9, Rhoa, miR431, miR182, DMD, ROCK1, and DHX57, with both negative and positive associations. Based on the results, we determined that Zn was involved in Al-induced MCI in Al workers and Al-exposed rat models. Al exposure and interaction with Zn could trigger the downregulation of ZNF of ROCK1, DMD, and DHX57. miR431, miR182 regulate RHOA/ROCK1 was one of the Zn-involved pathways in Al-induced cognitive impairment.
Collapse
Affiliation(s)
- Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xianlin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lan Zhang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - ShanShan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaojun Zheng
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
2
|
Lin Y, Horne WS. Backbone Modification in a Protein Hydrophobic Core. Chemistry 2024; 30:e202401890. [PMID: 38753977 PMCID: PMC11345847 DOI: 10.1002/chem.202401890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Targeted protein backbone modification can recreate tertiary structures reminiscent of folds found in nature on artificial scaffolds with improved biostability. Incorporation of altered monomers in such entities is typically limited to sites distant from the hydrophobic core to avoid potential disruptions to folding. This is limiting, as it is advantageous in some applications to incorporate artificial connectivity at buried sites. Here, we report an examination of protein backbone modification targeted specifically to hydrophobic core positions and its impacts on tertiary folded structure and fold stability. Different artificial monomer types are placed at core, core-flanking, or solvent-exposed positions in a compact three-helix protein. Effects on structure and folding energetics are assessed by NMR spectroscopy and biophysical methods. Results show that artificial residues can be well accommodated in the hydrophobic core of a defined tertiary fold, with effects on stability only modestly larger than identical changes at solvent-exposed sites. Collectively, these results provide new insights into folding behavior of protein-like artificial chains as well as strategies for the design of such molecules.
Collapse
Affiliation(s)
- Yuhan Lin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Marinova P, Tamahkyarova K. Synthesis and Biological Activities of Some Metal Complexes of Peptides: A Review. BIOTECH 2024; 13:9. [PMID: 38651489 PMCID: PMC11036290 DOI: 10.3390/biotech13020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Peptides, both natural and synthetic, are well suited for a wide range of purposes and offer versatile applications in different fields such as biocatalysts, injectable hydrogels, tumor treatment, and drug delivery. The research of the better part of the cited papers was conducted using various database platforms such as MetalPDB. The rising prominence of therapeutic peptides encompasses anticancer, antiviral, antimicrobial, and anti-neurodegenerative properties. The metals Na, K, Mg, Ca, Fe, Mn, Co, Cu, Zn, and Mo are ten of the twenty elements that are considered essential for life. Crucial for understanding the biological role of metals is the exploration of metal-bound proteins and peptides. Aside from essential metals, there are other non-essential metals that also interact biologically, exhibiting either therapeutic or toxic effects. Irregularities in metal binding contribute to diseases like Alzheimer's, neurodegenerative disorders, Wilson's, and Menkes disease. Certain metal complexes have potential applications as radiopharmaceuticals. The examination of these complexes was achieved by preforming UV-Vis, IR, EPR, NMR spectroscopy, and X-ray analysis. This summary, although unable to cover all of the studies in the field, offers a review of the ongoing experimentation and is a basis for new ideas, as well as strategies to explore and gain knowledge from the extensive realm of peptide-chelated metals and biotechnologies.
Collapse
Affiliation(s)
- Petja Marinova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, “Tzar Assen” Str. 24, 4000 Plovdiv, Bulgaria;
| | | |
Collapse
|
4
|
Santhouse JR, Leung JMG, Chong LT, Horne WS. Effects of altered backbone composition on the folding kinetics and mechanism of an ultrafast-folding protein. Chem Sci 2024; 15:675-682. [PMID: 38179541 PMCID: PMC10763558 DOI: 10.1039/d3sc03976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
Sequence-encoded protein folding is a ubiquitous biological process that has been successfully engineered in a range of oligomeric molecules with artificial backbone chemical connectivity. A remarkable aspect of protein folding is the contrast between the rapid rates at which most sequences in nature fold and the vast number of conformational states possible in an unfolded chain with hundreds of rotatable bonds. Research efforts spanning several decades have sought to elucidate the fundamental chemical principles that dictate the speed and mechanism of natural protein folding. In contrast, little is known about how protein mimetic entities transition between an unfolded and folded state. Here, we report effects of altered backbone connectivity on the folding kinetics and mechanism of the B domain of Staphylococcal protein A (BdpA), an ultrafast-folding sequence. A combination of experimental biophysical analysis and atomistic molecular dynamics simulations performed on the prototype protein and several heterogeneous-backbone variants reveal the interplay among backbone flexibility, folding rates, and structural details of the transition state ensemble. Collectively, these findings suggest a significant degree of plasticity in the mechanisms that can give rise to ultrafast folding in the BdpA sequence and provide atomic level insights into how protein mimetic chains adopt an ordered folded state.
Collapse
Affiliation(s)
| | - Jeremy M G Leung
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
5
|
Harmon TW, Horne WS. Protein Backbone Alteration in Non-Hairpin β-Turns: Impacts on Tertiary Folded Structure and Folded Stability. Chembiochem 2023; 24:e202300113. [PMID: 36920327 PMCID: PMC10239330 DOI: 10.1002/cbic.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/16/2023]
Abstract
The importance of β-turns to protein folding has motivated extensive efforts to stabilize the motif with non-canonical backbone connectivity. Prior work has focused almost exclusively on turns between strands in a β-sheet (i. e., hairpins). Turns in other structural contexts are also common in nature and have distinct conformational preferences; however, design principles for their mimicry remain poorly understood. Here, we report strategies that stabilize non-hairpin β-turns through systematic evaluation of the impacts of backbone alteration on the high-resolution folded structure and folded stability of a helix-loop-helix prototype protein. Several well-established hairpin turn mimetics are shown detrimental to folded stability and/or hydrophobic core packing, while less-explored modification schemes that reinforce alternate turn types lead to improved stability and more faithful structural mimicry. Collectively, these results have implications in control over protein folding through chemical modification as well as the design of protein mimetics.
Collapse
Affiliation(s)
- Thomas W Harmon
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Rao SR, Harmon TW, Heath SL, Wolfe JA, Santhouse JR, O'Brien GL, Distefano AN, Reinert ZE, Horne WS. Chemical Shifts of Artificial Monomers Used to Construct Heterogeneous-Backbone Protein Mimetics in Random Coil and Folded States. Pept Sci (Hoboken) 2023; 115:e24297. [PMID: 37397503 PMCID: PMC10312354 DOI: 10.1002/pep2.24297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 03/03/2024]
Abstract
The construction of protein-sized synthetic chains that blend natural amino acids with artificial monomers to create so-called heterogeneous-backbones is a powerful approach to generate complex folds and functions from bio-inspired agents. A variety of techniques from structural biology commonly used to study natural proteins have been adapted to investigate folding in these entities. In NMR characterization of proteins, proton chemical shift is a straightforward to acquire, information-rich metric that bears directly on a variety of properties related to folding. Leveraging chemical shift to gain insight into folding requires a set of reference chemical shift values corresponding to each building block type (i.e., the 20 canonical amino acids in the case of natural proteins) in a random coil state and knowledge of systematic changes in chemical shift associated with particular folded conformations. Although well documented for natural proteins, these issues remain unexplored in the context of protein mimetics. Here, we report random coil chemical shift values for a library of artificial amino acid monomers frequently used to construct heterogeneous-backbone protein analogues as well as a spectroscopic signature associated with one monomer class, β3-residues bearing proteinogenic side chains, adopting a helical folded conformation. Collectively, these results will facilitate the continued utilization of NMR for the study of structure and dynamics in protein-like artificial backbones.
Collapse
Affiliation(s)
- Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Thomas W Harmon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shelby L Heath
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jacob A Wolfe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Gregory L O'Brien
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexis N Distefano
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Zachary E Reinert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
7
|
Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Int J Mol Sci 2022; 23:ijms232415957. [PMID: 36555599 PMCID: PMC9782655 DOI: 10.3390/ijms232415957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metal chelation can provide structural stability and form reactive centers in metalloproteins. Approximately one third of known protein structures are metalloproteins, and metal binding, or the lack thereof, is often implicated in disease, making it necessary to be able to study these systems in detail. Peptide-metal complexes are both present in nature and can provide a means to focus on the binding region of a protein and control experimental variables to a high degree. Structural studies of peptide complexes with metal ions by nuclear magnetic resonance (NMR) were surveyed for all the essential metal complexes and many non-essential metal complexes. The various methods used to study each metal ion are presented together with examples of recent research. Many of these metal systems have been individually reviewed and this current overview of NMR studies of metallopeptide complexes aims to provide a basis for inspiration from structural studies and methodology applied in the field.
Collapse
|
8
|
Horx P, Geyer A. High five! Methyl probes at five ring positions of phenylalanine explore the hydrophobic core dynamics of zinc finger miniproteins. Chem Sci 2021; 12:11455-11463. [PMID: 34667551 PMCID: PMC8447250 DOI: 10.1039/d1sc02346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
The elucidation of internal dynamics in proteins is essential for the understanding of their stability and functionality. Breaking the symmetry of the degenerate rotation of the phenyl side chain provides additional structural information and allows a detailed description of the dynamics. Based on this concept, we propose a combination of synthetic and computational methods, to study the rotational mobility of the Phe ring in a sensitive zinc finger motif. The systematic methyl hopping around the phenylalanine ring yields o-, m-, p-tolyl and xylyl side chains that provide a vast array of additional NOE contacts, allowing the precise determination of the orientation of the aromatic ring. MD simulations and metadynamics complement these findings and facilitate the generation of free energy profiles for each derivative. Previous studies used a wide temperature window in combination with NMR spectroscopy to elucidate the side chain mobility of stable proteins. The zinc finger moiety exhibits a limited thermodynamic stability in a temperature range of only 40 K, making this approach impractical for this compound class. Therefore, we have developed a method that can be applied even to thermolabile systems and facilitates the detailed investigation of protein dynamics.
Collapse
Affiliation(s)
- Philip Horx
- Philipps-University Marburg 35043 Marburg Germany
| | - Armin Geyer
- Philipps-University Marburg 35043 Marburg Germany
| |
Collapse
|
9
|
Santhouse JR, Rao SR, Horne WS. Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics. Methods Enzymol 2021; 656:93-122. [PMID: 34325801 PMCID: PMC8392274 DOI: 10.1016/bs.mie.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent years have seen a growing number of examples of designed oligomeric molecules with artificial backbone connectivity that are capable of adopting complex folded tertiary structures analogous to those seen in natural proteins. A range of experimental techniques from structural biology and biophysics have been brought to bear in the study of these proteomimetic agents. Here, we discuss some considerations encountered in the characterization of high-resolution folded structure as well as folding thermodynamics of protein-like artificial backbones. We provide an overview of the use of X-ray crystallography and NMR spectroscopy in such systems and review example applications of these methods in the primary literature. Further, we provide detailed protocols for two experiments that have proved useful in our prior and ongoing efforts to compare folding thermodynamics between natural protein domains and heterogeneous-backbone counterparts.
Collapse
Affiliation(s)
| | - Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
10
|
Abstract
Sequence-defined oligomeric molecules with discrete folding propensities, termed foldamers, are a versatile source of agents with tailored structure and function. An inspiration for the development of the foldamer paradigm are natural biomacromolecules, the sequence-encoded folding of which is the basis of life. Metal ions and clusters are common features in proteins, where the role of metal varies from supporting structure to enabling function. The ubiquity of metals in natural systems suggests promise for metals in the context of folded artificial backbones. In this Minireview, we highlight efforts to realize this potential through a survey of published work on the design, synthesis, and characterization of metal-binding foldamers.
Collapse
Affiliation(s)
- Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shelby L Schettler
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
11
|
Bogetti AT, Piston HE, Leung JMG, Cabalteja CC, Yang DT, DeGrave AJ, Debiec KT, Cerutti DS, Case DA, Horne WS, Chong LT. A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics. J Chem Phys 2020; 153:064101. [PMID: 35287464 PMCID: PMC7419161 DOI: 10.1063/5.0019054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
We present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the Cα-methylated α-residue Aib, homologated β-residues (β3) bearing proteinogenic side chains, and two cyclic β residues (βcyc; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms. Consistent with the AMBER IPolQ lineage of force fields, the charges were derived using the Implicitly Polarized Charge (IPolQ) scheme in the presence of explicit solvent. To our knowledge, no general force field reported to date models the combination of artificial building blocks examined here. In addition, we have derived Karplus coefficients for the calculation of backbone amide J-coupling constants for β3Ala and ACPC β residues. The AMBER ff15ipq-m force field reproduces experimentally observed J-coupling constants in simple tetrapeptides and maintains the expected conformational propensities in reported structures of proteins/peptides containing the artificial building blocks of interest-all on the μs timescale. These encouraging results demonstrate the power and robustness of the IPolQ lineage of force fields in modeling the structure and dynamics of natural proteins as well as mimetics with protein-inspired artificial backbones in atomic detail.
Collapse
Affiliation(s)
- Anthony T. Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Hannah E. Piston
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Jeremy M. G. Leung
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | - Darian T. Yang
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, USA
| | - Alex J. DeGrave
- School of Computer Science and Engineering, University of Washington, Seattle, Washington 98115, USA
| | | | - David S. Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 008854, USA
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 008854, USA
| | - W. Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|