1
|
Casalini G, Giacomelli A, Galimberti L, Colombo R, Milazzo L, Cattaneo D, Castelli A, Antinori S. Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit. J Fungi (Basel) 2024; 10:639. [PMID: 39330399 PMCID: PMC11433123 DOI: 10.3390/jof10090639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections.
Collapse
Affiliation(s)
- Giacomo Casalini
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Andrea Giacomelli
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, DIBIC, Università degli Studi di Milano, 20157 Milan, Italy
| | - Laura Galimberti
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Riccardo Colombo
- Anesthesia and Intensive Care Unit, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Laura Milazzo
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Dario Cattaneo
- Unit of Clinical Pathology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Antonio Castelli
- Anesthesia and Intensive Care Unit, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Spinello Antinori
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, DIBIC, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
2
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
3
|
Tangella AV, Gajre A, Kantheti VV. Isocitrate Dehydrogenase 1 Mutation and Ivosidenib in Patients With Acute Myeloid Leukemia: A Comprehensive Review. Cureus 2023; 15:e44802. [PMID: 37692182 PMCID: PMC10483130 DOI: 10.7759/cureus.44802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from immature myeloid progenitors, resulting in a stem-cell-like proliferative state. This leads to excessive pools of immature cells that cannot function, which usually happens at the cost of the production of mature functional cells, leading to deleterious consequences. The management of AML has intensified as newer targeted therapies have come into existence owing to deeper genetic analysis of the disease and patients. Isocitrate dehydrogenase (IDH) is a cytosolic enzyme that is a part of the Krebs cycle and is extremely important in maintaining the homeostasis of the cell. It is produced by two different genes: IDH1 and IDH2. Ivosidenib has been associated with IDH1 inhibition and has been studied in numerous cancers. This review highlights the studies that have dealt with ivosidenib, an IDH1 inhibitor, in AML, the side effect profile, and the possible future course of the drug. After a scoping review of the available literature, we have identified that studies have consistently shown positive outcomes and that ivosidenib is a promising avenue for the management of AML. But it also has to be kept in mind that resistance to IDH inhibitors is on the rise, and the need to identify ways to circumvent this is to be addressed.
Collapse
Affiliation(s)
| | - Ashwin Gajre
- Internal Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, IND
| | | |
Collapse
|
4
|
Zhang L, Zhong DX, Yue M, Xuan LT, Zhang ZX, Li JJ, Li JH, Zou JZ, Yan YC, Liu R. [Clinical analysis of six cases of mucormycosis in children with acute leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:594-597. [PMID: 37749043 PMCID: PMC10509617 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 09/27/2023]
Affiliation(s)
- L Zhang
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| | - D X Zhong
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| | - M Yue
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| | - L T Xuan
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Z X Zhang
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| | - J J Li
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| | - J H Li
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| | - J Z Zou
- Department of Pathology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Y C Yan
- Department of Imaging, Capital Institute of Pediatrics, Beijing 100020, China
| | - R Liu
- Department of Hematology, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
5
|
Escamilla JE, January SE, Vazquez Guillamet R. Diagnosis and Treatment of Fungal Infections in Lung Transplant Recipients. Pathogens 2023; 12:pathogens12050694. [PMID: 37242364 DOI: 10.3390/pathogens12050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal infections are a significant source of morbidity in the lung transplant population via direct allograft damage and predisposing patients to the development of chronic lung allograft dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and treatment strategies in the lung transplant population for fungal infections caused by Aspergillus, Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary fungal infections in lung transplant recipients is also discussed.
Collapse
Affiliation(s)
- Jesus E Escamilla
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Spenser E January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Rodrigo Vazquez Guillamet
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Rodrigo Vazquez Guillamet, 4921 Parkview Place, Saint Louis, MO 63110, USA
| |
Collapse
|
6
|
Vuong NN, Hammond D, Kontoyiannis DP. Clinical Uses of Inhaled Antifungals for Invasive Pulmonary Fungal Disease: Promises and Challenges. J Fungi (Basel) 2023; 9:jof9040464. [PMID: 37108918 PMCID: PMC10146217 DOI: 10.3390/jof9040464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The role of inhaled antifungals for prophylaxis and treatment of invasive fungal pneumonias remains undefined. Herein we summarize recent clinically relevant literature in high-risk groups such as neutropenic hematology patients, including those undergoing stem cell transplant, lung and other solid transplant recipients, and those with sequential mold lung infections secondary to viral pneumonias. Although there are several limitations of the available data, inhaled liposomal amphotericin B administered 12.5 mg twice weekly could be an alternative method of prophylaxis in neutropenic populations at high risk for invasive fungal pneumonia where systemic triazoles are not tolerated. In addition, inhaled amphotericin B has been commonly used as prophylaxis, pre-emptive, or targeted therapy for lung transplant recipients but is considered as a secondary alternative for other solid organ transplant recipients. Inhaled amphotericin B seems promising as prophylaxis in fungal pneumonias secondary to viral pneumonias, influenza, and SARS CoV-2. Data remain limited for inhaled amphotericin for adjunct treatment, but the utility is feasible.
Collapse
Affiliation(s)
- Nancy N Vuong
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Disease, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Brunet K, Martellosio JP, Tewes F, Marchand S, Rammaert B. Inhaled Antifungal Agents for Treatment and Prophylaxis of Bronchopulmonary Invasive Mold Infections. Pharmaceutics 2022; 14:pharmaceutics14030641. [PMID: 35336015 PMCID: PMC8949245 DOI: 10.3390/pharmaceutics14030641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary mold infections are life-threatening diseases with high morbi-mortalities. Treatment is based on systemic antifungal agents belonging to the families of polyenes (amphotericin B) and triazoles. Despite this treatment, mortality remains high and the doses of systemic antifungals cannot be increased as they often lead to toxicity. The pulmonary aerosolization of antifungal agents can theoretically increase their concentration at the infectious site, which could improve their efficacy while limiting their systemic exposure and toxicity. However, clinical experience is poor and thus inhaled agent utilization remains unclear in term of indications, drugs, and devices. This comprehensive literature review aims to describe the pharmacokinetic behavior and the efficacy of inhaled antifungal drugs as prophylaxes and curative treatments both in animal models and humans.
Collapse
Affiliation(s)
- Kévin Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Mycologie-Parasitologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| | - Jean-Philippe Martellosio
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Frédéric Tewes
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
| | - Sandrine Marchand
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Blandine Rammaert
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| |
Collapse
|
9
|
Stemer G, Rowe JM, Ofran Y. Efficacy and Safety Profile of Ivosidenib in the Management of Patients with Acute Myeloid Leukemia (AML): An Update on the Emerging Evidence. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2021; 11:41-54. [PMID: 34188585 PMCID: PMC8235936 DOI: 10.2147/blctt.s236446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
The isocitrate dehydrogenase enzyme, catalyzing isocitrate conversion to α-ketoglutarate (αKG) in both the cell cytoplasm and mitochondria, contributes to the production of dihydronicotinamide-adenine dinucleotide phosphate (NADPH) as a reductive potential in various cellular processes. IDH1 gene mutations are revealed in up to 20% of the patients with acute myeloid leukemia (AML). A mutant IDH enzyme, existing in the cell cytoplasm and possessing neomorphic activity, converts αKG into oncometabolite R-2-hydroxyglutarate (R-2-HG) that accumulates in high amounts in the cell and inhibits αKG-dependent enzymes, including epigenetic regulators. The resultant alteration in gene expression and blockade of differentiation ultimately lead to leukemia development. Myeloid differentiation capacity can be restored by obstruction of the mutant enzyme, inducing substantial reduction in R-2-HG levels. Ivosidenib, a potent selective inhibitor of mutant IDH1, is a differentiating agent shown to be clinically effective in newly diagnosed AML (ND-AML) and relapsed/refractory (R/R) AML harboring this mutation. The drug is approved by the Food and Drug Administration (FDA) as a single-agent treatment for R/R AML. Significance of mutated IDH1 targeting and a potential role of ivosidenib in AML management, when used either as a single agent or as part of combination therapies, will be reviewed herein.
Collapse
Affiliation(s)
- Galia Stemer
- Institute of Hematology, Ha'Emek Medical Center, Afula, Israel
| | - Jacob M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
10
|
Abstract
Over the past 15 years, there has been an increase in the development and utilization of newer antifungal agents. The ideal antifungal, however, in regard to spectrum of activity, pharmacokinetic/pharmacodynamic properties, development of resistance, safety, and drug interaction profile remains elusive. This article reviews pharmacologic aspects of Food and Drug Administration-approved polyenes, flucytosine, azoles, and echinocandins as well as promising pipeline antifungal agents. Unique properties of these newer agents are highlighted. The clinical role of established and investigational antifungal agents as treatment and/or prevention of invasive fungal infections is discussed.
Collapse
Affiliation(s)
- Melissa D Johnson
- Duke University Medical Center, Box 102359 DUMC, Durham NC 27710, USA.
| |
Collapse
|
11
|
Brunet K, Rammaert B. Mucormycosis treatment: Recommendations, latest advances, and perspectives. J Mycol Med 2020; 30:101007. [PMID: 32718789 DOI: 10.1016/j.mycmed.2020.101007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022]
Abstract
Mucormycosis are life-threatening fungal infections especially affecting immunocompromised or diabetic patients. Despite treatment, mortality remains high (from 32 to 70% according to organ involvement). This review provides an update on mucormycosis management. The latest recommendations strongly recommend as first-line therapy the use of liposomal amphotericin B (≥5mg/kg) combined with surgery whenever possible. Isavuconazole and intravenous or delayed-release tablet forms of posaconazole have remained second-line. Many molecules are currently in development to fight against invasive fungal diseases but few have demonstrated efficacy against Mucorales. Despite in vitro efficacy, combinations of treatment have failed to demonstrate superiority versus monotherapy. Adjuvant therapies are particularly complex to evaluate without prospective randomized controlled studies, which are complex to perform due to low incidence rate and high mortality of mucormycosis. Perspectives are nonetheless encouraging. New approaches assessing relationships between host, fungi, and antifungal drugs, and new routes of administration such as aerosols could improve mucormycosis treatment.
Collapse
Affiliation(s)
- K Brunet
- INSERM U1070, Poitiers, France; Faculté de médecine et pharmacie, université de Poitiers, Poitiers, France; Service de mycologie-parasitologie, département des agents infectieux, CHU de Poitiers, Poitiers, France.
| | - B Rammaert
- INSERM U1070, Poitiers, France; Faculté de médecine et pharmacie, université de Poitiers, Poitiers, France; Service de maladies infectieuses et tropicales, CHU de Poitiers, Poitiers, France
| |
Collapse
|
12
|
Duckwall MJ, Gales MA, Gales BJ. Inhaled Amphotericin B as Aspergillosis Prophylaxis in Hematologic Disease: An Update. Microbiol Insights 2019; 12:1178636119869937. [PMID: 31496719 PMCID: PMC6716174 DOI: 10.1177/1178636119869937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the literature on inhaled amphotericin B for invasive
aspergillosis prophylaxis in patients with neutropenia secondary to hematologic
malignancy treatment or stem cell transplant. Six trials, 2 randomized
controlled and 4 with historical controls, were identified. Three inhaled
amphotericin B deoxycholate trials found a reduced invasive aspergillosis
incidence, 1 reaching statistical significance. Three inhaled liposomal
amphotericin B trials demonstrated similar reductions with 2 finding statistical
significance. Relative risk reductions for invasive aspergillosis were routinely
40-60%. Both formulations were without reported systemic or severe adverse
effects. The most common adverse events were cough, bad taste, and nausea.
Discontinuation rates ranged from 0-45%. The only randomized, placebo-controlled
trial utilized inhaled liposomal amphotericin B reported a nearly 60% relative
risk reduction. Inhaled liposomal amphotericin B 12.5 mg twice weekly is an alternative for
invasive aspergillosis prophylaxis in high risk neutropenic patients with
hematologic malignancies and stem cell transplant recipients when recommended
azole agents are contraindicated or should not be used.
Collapse
Affiliation(s)
- Madison J Duckwall
- Department of Pharmacy, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| | - Mark A Gales
- Department of Pharmacy, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA.,College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA.,Great Plains Family Medicine Residency, Oklahoma City, OK, USA
| | - Barry J Gales
- Department of Pharmacy, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA.,College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA.,Great Plains Family Medicine Residency, Oklahoma City, OK, USA
| |
Collapse
|
13
|
Venanzi E, Martín-Dávila P, López J, Maiz L, de la Pedrosa EGG, Gioia F, Escudero R, Filigheddu E, Moreno S, Fortún J. Aerosolized Lipid Amphotericin B for Complementary Therapy and/or Secondary Prophylaxis in Patients with Invasive Pulmonary Aspergillosis: A Single-Center Experience. Mycopathologia 2019; 184:239-250. [PMID: 30903580 DOI: 10.1007/s11046-019-00331-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/14/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Experience with aerosolized lipid amphotericin B (aeLAB) as therapy or secondary prophylaxis in patients with invasive pulmonary aspergillosis (IPA) is anecdotal. METHODS We performed a single-center retrospective cohort study to evaluate the efficacy of systemic antifungal therapy with and without aeLAB in patients with proven or probable IPA. Complete or partial response at 3 months was the primary end-point. Clinical response and mortality at 12 months, occurrence of adverse drug reactions and respiratory fungal colonization were secondary end-point. RESULTS Eleven patients (39%) received aeLAB in addition to systemic antifungal therapy (group A), and 22 (61%) received systemic antifungal therapy only (group B). The use of aeLAB was not standardized. Amphotericin B lipid complex was used in all patients but one, who received liposomal amphotericin B. Five patients received aeLAB as antifungal complementary therapy and 6 received it as secondary prophylaxis. Except for the requirement of inhaled corticosteroids and home oxygen therapy, more frequent in group A, both groups were similar in baseline conditions. A better (nonsignificant) clinical outcome was observed at 3 months in patients receiving aeLAB. Only uncontrolled baseline condition was associated with one-year mortality in univariate analysis (p = 0.002). A multivariate Cox regression analysis suggests that aeLAB, corrected for uncontrolled underlying disease, reduces mortality at 12 months (HR 0.258; 95% CI 0.072-0.922; p = 0.037). CONCLUSION Although no significant difference was observed in the main variable (3-month clinical response) and in spite of methodological limitations of the study, the possible survival benefit of aeLAB, adjusted for the control of the underlying disease, could justify the performance of well-controlled studies with a greater number of patients.
Collapse
Affiliation(s)
- E Venanzi
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Carretera Colmenar km 9,1, 28034, Madrid, Spain
| | - P Martín-Dávila
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Carretera Colmenar km 9,1, 28034, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - J López
- Hematology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - L Maiz
- Pneumology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - E Gómez-García de la Pedrosa
- Microbiology Department, Hospital Ramón y Cajal, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - F Gioia
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Carretera Colmenar km 9,1, 28034, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - R Escudero
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Carretera Colmenar km 9,1, 28034, Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - E Filigheddu
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Carretera Colmenar km 9,1, 28034, Madrid, Spain
| | - S Moreno
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Carretera Colmenar km 9,1, 28034, Madrid, Spain
| | - J Fortún
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Carretera Colmenar km 9,1, 28034, Madrid, Spain.
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain.
| |
Collapse
|
14
|
Nebulization of Antiinfective Agents in Invasively Mechanically Ventilated Adults: A Systematic Review and Meta-analysis. Anesthesiology 2017; 126:890-908. [PMID: 28248714 DOI: 10.1097/aln.0000000000001570] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nebulization of antiinfective agents is a common but unstandardized practice in critically ill patients. METHODS A systematic review of 1,435 studies was performed in adults receiving invasive mechanical ventilation. Two different administration strategies (adjunctive and substitute) were considered clinically relevant. Inclusion was restricted to studies using jet, ultrasonic, and vibrating-mesh nebulizers. Studies involving children, colonized-but-not-infected adults, and cystic fibrosis patients were excluded. RESULTS Five of the 11 studies included had a small sample size (fewer than 50 patients), and only 6 were randomized. Diversity of case-mix, dosage, and devices are sources of bias. Only a few patients had severe hypoxemia. Aminoglycosides and colistin were the most common antibiotics, being safe regarding nephrotoxicity and neurotoxicity, but increased respiratory complications in 9% (95% CI, 0.01 to 0.18; I = 52%), particularly when administered to hypoxemic patients. For tracheobronchitis, a significant decrease in emergence of resistance was evidenced (risk ratio, 0.18; 95% CI, 0.05 to 0.64; I = 0%). Similar findings were observed in pneumonia by susceptible pathogens, without improvement in mortality or ventilation duration. In pneumonia caused by resistant pathogens, higher clinical resolution (odds ratio, 1.96; 95% CI, 1.30 to 2.96; I = 0%) was evidenced. These findings were not consistently evidenced in the assessment of efficacy against pneumonia caused by susceptible pathogens. CONCLUSIONS Performance of randomized trials evaluating the impact of nebulized antibiotics with more homogeneous populations, standardized drug delivery, predetermined clinical efficacy, and safety outcomes is urgently required. Infections by resistant pathogens might potentially have higher benefit from nebulized antiinfective agents. Nebulization, without concomitant systemic administration of the drug, may reduce nephrotoxicity but may also be associated with higher risk of respiratory complications.
Collapse
|
15
|
Rello J, Solé-Lleonart C, Rouby JJ, Chastre J, Blot S, Poulakou G, Luyt CE, Riera J, Palmer LB, Pereira JM, Felton T, Dhanani J, Bassetti M, Welte T, Roberts JA. Use of nebulized antimicrobials for the treatment of respiratory infections in invasively mechanically ventilated adults: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect 2017; 23:629-639. [PMID: 28412382 DOI: 10.1016/j.cmi.2017.04.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
With an established role in cystic fibrosis and bronchiectasis, nebulized antibiotics are increasingly being used to treat respiratory infections in critically ill invasively mechanically ventilated adult patients. Although there is limited evidence describing their efficacy and safety, in an era when there is a need for new strategies to enhance antibiotic effectiveness because of a shortage of new agents and increases in antibiotic resistance, the potential of nebulization of antibiotics to optimize therapy is considered of high interest, particularly in patients infected with multidrug-resistant pathogens. This Position Paper of the European Society of Clinical Microbiology and Infectious Diseases provides recommendations based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology regarding the use of nebulized antibiotics in invasively mechanically ventilated adults, based on a systematic review and meta-analysis of the existing literature (last search July 2016). Overall, the panel recommends avoiding the use of nebulized antibiotics in clinical practice, due to a weak level of evidence of their efficacy and the high potential for underestimated risks of adverse events (particularly, respiratory complications). Higher-quality evidence is urgently needed to inform clinical practice. Priorities of future research are detailed in the second part of the Position Paper as guidance for researchers in this field. In particular, the panel identified an urgent need for randomized clinical trials of nebulized antibiotic therapy as part of a substitution approach to treatment of pneumonia due to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- J Rello
- CIBERES, Universitat Autonòma de Barcelona, European Study Group of Infections in Critically Ill Patients, Barcelona, Spain.
| | - C Solé-Lleonart
- Service de Médecine Intensive Adulte, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - J-J Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre et Marie Curie of Paris 6, Paris, France
| | - J Chastre
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie of Paris, Paris, France
| | - S Blot
- Department of Internal Medicine, Faculty of Medicine & Health Science, Ghent University, Ghent, Belgium
| | - G Poulakou
- 4th Department of Internal Medicine, Athens University School of Medicine, Attikon University General Hospital, Athens, Greece
| | - C-E Luyt
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre et Marie Curie of Paris 6, Paris, France
| | - J Riera
- Clinical Research & Innovation in Pneumonia and Sepsis, Vall d'Hebron Institute of Research, CIBERES, Barcelona, Spain
| | - L B Palmer
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - J M Pereira
- Emergency and Intensive Care Department, Centro Hospitalar S. João EPE, Porto, Portugal; Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - T Felton
- Acute Intensive Care Unit, University Hospital of South Manchester, Manchester, United Kingdom
| | - J Dhanani
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Butterfield Street, Herston, Brisbane, Australia
| | - M Bassetti
- Infectious Diseases Division, Santa Maria Misericordia University Hospital, Udine, Italy
| | - T Welte
- German Centre for Lung Research (DZL), Department of Respiratory Medicine, Medizinische Hochschule, Hannover, Germany
| | - J A Roberts
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Butterfield Street, Herston, Brisbane, Australia
| |
Collapse
|
16
|
Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JAH, Bennett JE. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63:e1-e60. [PMID: 27365388 DOI: 10.1093/cid/ciw326] [Citation(s) in RCA: 1635] [Impact Index Per Article: 204.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
- Thomas F Patterson
- University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System
| | | | - David W Denning
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, United Kingdom
| | - Jay A Fishman
- Massachusetts General Hospital and Harvard Medical School
| | | | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Vicki A Morrison
- Hennepin County Medical Center and University of Minnesota, Minneapolis
| | | | - Brahm H Segal
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, and Roswell Park Cancer Institute, New York
| | | | | | - Thomas J Walsh
- New York-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | | | | | - John E Bennett
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Godet C, Goudet V, Laurent F, Moal GL, Gounant V, Frat JP, cateau E, Roblot F, Cadranel J. Nebulised liposomal amphotericin B forAspergilluslung diseases: case series and literature review. Mycoses 2015; 58:173-80. [DOI: 10.1111/myc.12294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Cendrine Godet
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - Véronique Goudet
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - François Laurent
- Department of Diagnostic and Therapeutic Imaging; Haut-Levêque Hospital; University Hospital of Bordeaux and Université Victor Segalen; Bordeaux France
| | - Gwenaël Le Moal
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - Valérie Gounant
- AP-HP, Hôpital Tenon; Service de Pneumologie; Paris France
- Sorbonne Université; UPMC Univ Paris 06; Paris France
| | - Jean-Pierre Frat
- Service de Réanimation médicale; CHU la Milétrie; Poitiers France
| | | | - France Roblot
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - Jacques Cadranel
- AP-HP, Hôpital Tenon; Service de Pneumologie; Paris France
- Sorbonne Université; UPMC Univ Paris 06; Paris France
| |
Collapse
|
18
|
Trifilio S, Heraty R, Zomas A, Zhou Z, Fong J, Liu D, Zhao C, Zhang J, Mehta J. Amphotericin B deoxycholate nasal spray administered to hematopoietic stem cell recipients with prior fungal colonization of the upper airway passages is associated with low rates of invasive fungal infection. Transpl Infect Dis 2015; 17:1-6. [DOI: 10.1111/tid.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/15/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Affiliation(s)
- S.M. Trifilio
- Feinberg School of Medicine; Northwestern University; Chicago Illinois USA
- Northwestern Memorial Hospital; Chicago Illinois USA
| | - R. Heraty
- Northwestern Memorial Hospital; Chicago Illinois USA
| | - A. Zomas
- Northwestern Memorial Hospital; Chicago Illinois USA
| | - Z. Zhou
- Feinberg School of Medicine; Northwestern University; Chicago Illinois USA
| | - J.L. Fong
- Northwestern Memorial Hospital; Chicago Illinois USA
| | - D. Liu
- Northwestern Memorial Hospital; Chicago Illinois USA
| | - C. Zhao
- Northwestern Memorial Hospital; Chicago Illinois USA
| | - J. Zhang
- Northwestern Memorial Hospital; Chicago Illinois USA
| | - J. Mehta
- Feinberg School of Medicine; Northwestern University; Chicago Illinois USA
| |
Collapse
|