1
|
Zhang S, Liao X, Ding T, Ahn J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:260. [PMID: 38534695 DOI: 10.3390/antibiotics13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Since the discovery of penicillin, β-lactam antibiotics have commonly been used to treat bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing β-lactamases. Therefore, a combination of β-lactam antibiotics with β-lactamase inhibitors has been a promising approach to controlling β-lactam-resistant bacteria. The discovery of novel β-lactamase inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. Therefore, this review discusses the development of innovative inhibitors meant to enhance the activity of β-lactam antibiotics. Specifically, this review describes the classification and characteristics of different classes of β-lactamases and the synergistic mechanisms of β-lactams and BLIs. In addition, we introduce potential sources of compounds for use as novel BLIs. This provides insights into overcoming current challenges in β-lactamase-producing bacteria and designing effective treatment options in combination with BLIs.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
2
|
Bavaro DF, Belati A, Bussini L, Cento V, Diella L, Gatti M, Saracino A, Pea F, Viale P, Bartoletti M. Safety and effectiveness of fifth generation cephalosporins for the treatment of methicillin-resistant staphylococcus aureus bloodstream infections: a narrative review exploring past, present, and future. Expert Opin Drug Saf 2024; 23:9-36. [PMID: 38145925 DOI: 10.1080/14740338.2023.2299377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection (BSI) is a major issue in healthcare, since it is often associated with endocarditis or deep site foci. Relevant morbidity and mortality associated with MRSA-BSIs forced the development of new antibiotic strategies; in particular, this review will focus the attention on fifth-generation cephalosporins (ceftaroline/ceftobiprole), that are the only ß-lactams active against MRSA. AREAS COVERED The review discusses the available randomized controlled trials and real-world observational studies conducted on safety and effectiveness of ceftaroline/ceftobiprole for the treatment of MRSA-BSIs. Finally, a proposal of MRSA-BSI treatment flowchart, based on fifth-generation cephalosporins, is described. EXPERT OPINION The use of anti-MRSA cephalosporins is an acceptable choice either in monotherapy or combination therapy for the treatment of MRSA-BSIs due to their relevant effectiveness and safety. Particularly, their use may be advisable in combination therapy in case of severe infections (including endocarditis or persistent bacteriemia) or in monotherapy in subjects at higher risk of drugs-induced toxicity with older regimens. On the contrary, caution should be taken in case of suspected/ascertained central nervous system infections due to inconsistent data regarding penetration of these drugs in cerebrospinal fluid and brain tissues.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Belati
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Linda Bussini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Microbiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lucia Diella
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
3
|
Shafiekhani M, Fatemi SA, Hosseini P, Marhemati F, Mohammadi S, Sharifi F, Moorkani Kurde Esfahani Pour A, Sadeghi Habibabad F, Saad Abadi N, Shorafa E, Azadi S. Pharmacokinetic and Pharmacodynamic Considerations of Novel Antibiotic Agents for Pediatric Infections: A Narrative Review. Surg Infect (Larchmt) 2023; 24:703-715. [PMID: 37831932 DOI: 10.1089/sur.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Background: Currently, the escalation of microbial resistance poses a significant global challenge. Children are more susceptible to develop infections and therefore are prescribed antibiotics more frequently. The overuse and misuse of antibiotics in pediatric patients can play a considerable role in developing microbial resistance. Accordingly, many policies, including research into new antibiotic agents have been recommended to combat microbial resistance. Recent developments in novel antibiotics have shown promising results against multi-drug resistant (MDR) and extensive drug resistance (XDR) pathogens. However, as pediatric patients are typically excluded from the clinical trials of new medications, labeling and information about approved antibiotics should be improved. This study aimed to evaluate antibiotics having been introduced to the market in the last decade focusing on pediatric population. Methods: This study reviewed the published literatures on novel FDA-approved antibiotics released between 2010 and 2022. Results: Finally, seven newly approved antibiotics including ceftaroline fosamil, ceftazidime-avibactam, ceftolozane-tazobactam, ceftobiprole, imipenem-cilastatin-relebactam, meropenem-vaborbactam, and tedizolid were considered in the present review-article. All relevant data extracted from literatures, were discussed in different subtitles of "Pharmacology", "Mechanism of action", "Indication", "Dosage regimen and pharmacokinetic and pharmacodynamic properties", "Dosage adjustment in renal/liver failure", "Resistance pattern", and "Adverse drug events". Conclusion: This study reviewed available data on seven new antibiotic agents and their pharmacodynamic and pharmacokinetic properties, with a particular focus on their use in pediatric patients. The information presented in this review will be useful for healthcare professionals in selecting appropriate antibiotics for pediatric patients and for researchers in achieving the ideal therapeutic regimens.
Collapse
Affiliation(s)
- Mojtaba Shafiekhani
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pouria Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Marhemati
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soniya Mohammadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sharifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Negin Saad Abadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Eslam Shorafa
- Department of Pediatrics, Division of Pediatric Intensive Care, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Ruiz-Ramos J, Gras-Martín L, Ramírez P. Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12030475. [PMID: 36978342 PMCID: PMC10044431 DOI: 10.3390/antibiotics12030475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Critically ill patients suffering from severe infections are prone to pathophysiological pharmacokinetic changes that are frequently associated with inadequate antibiotic serum concentrations. Minimum inhibitory concentrations (MICs) of the causative pathogens tend to be higher in intensive care units. Both pharmacokinetic changes and high antibiotic resistance likely jeopardize the efficacy of treatment. The use of extracorporeal circulation devices to support hemodynamic, respiratory, or renal failure enables pharmacokinetic changes and makes it even more difficult to achieve an adequate antibiotic dose. Besides a clinical response, antibiotic pharmacokinetic optimization is important to reduce the selection of strains resistant to common antibiotics. In this review, we summarize the present knowledge regarding pharmacokinetic changes in critically ill patients and we discuss the effects of extra-corporeal devices on antibiotic treatment together with potential solutions.
Collapse
Affiliation(s)
- Jesus Ruiz-Ramos
- Pharmacy Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Laura Gras-Martín
- Pharmacy Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Paula Ramírez
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
5
|
Cain AR, Finoli LM, Guarascio A, Ogbebor O, Shively NR, Andrea T, Bremmer DN. Ceftaroline Pharmacokinetics in a Critically Ill Adult Receiving Continuous Venovenous Hemodiafiltration. Ann Pharmacother 2022; 56:965-966. [PMID: 34711073 DOI: 10.1177/10600280211053868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Anthony Guarascio
- Allegheny Health Network, Pittsburgh, PA, USA
- Duquesne University, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
6
|
Principe L, Lupia T, Andriani L, Campanile F, Carcione D, Corcione S, De Rosa FG, Luzzati R, Stroffolini G, Steyde M, Decorti G, Di Bella S. Microbiological, Clinical, and PK/PD Features of the New Anti-Gram-Negative Antibiotics: β-Lactam/β-Lactamase Inhibitors in Combination and Cefiderocol—An All-Inclusive Guide for Clinicians. Pharmaceuticals (Basel) 2022; 15:ph15040463. [PMID: 35455461 PMCID: PMC9028825 DOI: 10.3390/ph15040463] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Bacterial resistance mechanisms are continuously and rapidly evolving. This is particularly true for Gram-negative bacteria. Over the last decade, the strategy to develop new β-lactam/β-lactamase inhibitors (BLs/BLIs) combinations has paid off and results from phase 3 and real-world studies are becoming available for several compounds. Cefiderocol warrants a separate discussion for its peculiar mechanism of action. Considering the complexity of summarizing and integrating the emerging literature data of clinical outcomes, microbiological mechanisms, and pharmacokinetic/pharmacodynamic properties of the new BL/BLI and cefiderocol, we aimed to provide an overview of data on the following compounds: aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, cefepime/zidebactam, cefiderocol, ceftaroline/avibactam, ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/relebactam, meropenem/nacubactam and meropenem/vaborbactam. Each compound is described in a dedicated section by experts in infectious diseases, microbiology, and pharmacology, with tables providing at-a-glance information.
Collapse
Affiliation(s)
- Luigi Principe
- Clinical Pathology and Microbiology Unit, “San Giovanni di Dio” Hospital, I-88900 Crotone, Italy;
| | - Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia Hospital, I-14100 Asti, Italy; (T.L.); (F.G.D.R.)
| | - Lilia Andriani
- Clinical Pathology and Microbiology Unit, Hospital of Sondrio, I-23100 Sondrio, Italy;
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I-95123 Catania, Italy;
| | - Davide Carcione
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, I-20132 Milan, Italy;
| | - Silvia Corcione
- Infectious diseases Unit, Department of Medical Sciences, University of Torino, I-10124 Torino, Italy; (S.C.); (G.S.)
| | - Francesco Giuseppe De Rosa
- Unit of Infectious Diseases, Cardinal Massaia Hospital, I-14100 Asti, Italy; (T.L.); (F.G.D.R.)
- Infectious diseases Unit, Department of Medical Sciences, University of Torino, I-10124 Torino, Italy; (S.C.); (G.S.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
| | - Giacomo Stroffolini
- Infectious diseases Unit, Department of Medical Sciences, University of Torino, I-10124 Torino, Italy; (S.C.); (G.S.)
| | - Marina Steyde
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
| | - Giuliana Decorti
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
- Institute for Maternal and Child Health–IRCCS Burlo Garofolo, I-34137 Trieste, Italy
- Correspondence: ; Tel.: +39 40-378-5362
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
| |
Collapse
|
7
|
Alarcia-Lacalle A, Barrasa H, Maynar J, Canut-Blasco A, Gómez-González C, Solinís MÁ, Isla A, Rodríguez-Gascón A. Quantification of Ceftaroline in Human Plasma Using High-Performance Liquid Chromatography with Ultraviolet Detection: Application to Pharmacokinetic Studies. Pharmaceutics 2021; 13:959. [PMID: 34202113 PMCID: PMC8309110 DOI: 10.3390/pharmaceutics13070959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to develop a rapid, simple and reproducible method for the quantification of ceftaroline in plasma samples by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Sample processing consisted of methanol precipitation and then, after centrifugation, the supernatant was injected into the HPLC system, working in isocratic mode. Ceftaroline was detected at 238 nm at a short acquisition time (less than 5 min). The calibration curve was linear over the concentration range from 0.25 to 40 µg/mL, and the method appeared to be selective, precise and accurate. Ceftaroline in plasma samples was stable at -80 °C for at least 3 months. The method was successfully applied to characterize the pharmacokinetic profile of ceftaroline in two critically ill patients and to evaluate whether the pharmacokinetic/pharmacodynamic (PK/PD) target was reached or not with the dose regimen administered.
Collapse
Affiliation(s)
- Ana Alarcia-Lacalle
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| | - Helena Barrasa
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Intensive Care Unit, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Javier Maynar
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Intensive Care Unit, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Andrés Canut-Blasco
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Microbiology Service, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Carmen Gómez-González
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Microbiology Service, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| | - Arantxazu Isla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| |
Collapse
|
8
|
Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Approach for Guiding Dose Optimization of Novel Antibiotics. Clin Pharmacokinet 2021; 60:1271-1289. [PMID: 34125420 PMCID: PMC8505328 DOI: 10.1007/s40262-021-01040-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury represents a common complication in critically ill patients affected by septic shock and in many cases continuous renal replacement therapy (CRRT) may be required. In this scenario, antimicrobial dose optimization is highly challenging as the extracorporeal circuit may cause several pharmacokinetic alterations, which add up to volume of distribution and clearance variations resulting from sepsis. Variations in CRRT settings (i.e. modality of solute removal, type of filter material, blood flow rate and effluent flow rate), coupled with the presence of residual and/or recovering renal function, may cause dynamic variations in the clearance of hydrophilic antimicrobials. This means that dose reduction may not always be needed. Nowadays, the lack of pharmacokinetic data for novel antimicrobials during CRRT limits evidence-based dose recommendations for critically ill patients in this setting, thus making available evidence hardly applicable in real-world scenarios. This review aims to summarize the major determinants involved in antimicrobial clearance, and the available pharmacokinetic studies performed during CRRT involving novel antibiotics used for the management of multidrug-resistant Gram-positive and Gram-negative infections (namely ceftolozane–tazobactam, ceftazidime–avibactam, cefiderocol, imipenem–relebactam, meropenem–vaborbactam, ceftaroline, ceftobiprole, dalbavancin, and fosfomycin), providing a practical approach in guiding dose optimization in this special population.
Collapse
|