1
|
Rajabian F, Razavi BM, Mehri S, Amouian S, Ghasemzadeh Rahbardar M, Khajavi Rad A, Hosseinzadeh H. Evaluation of pathways involved in the protective effect of trans sodium crocetinate against contrast-induced nephropathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03600-y. [PMID: 39549062 DOI: 10.1007/s00210-024-03600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Contrast-induced nephropathy (CIN) is the most important side effect following contrast media application. The purpose of this study was to investigate the nephroprotective effects of trans sodium crocetinate (TSC) against sodium amidotrizoate/meglumine amidotrizoate (SAMA). Wistar rats were classified into eight groups (n = 6, male, 220-250 g) including (1) sham, injection of solvents (intraperitoneally; i.p.), (2) premedication-control, N(ω)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p.) + indomethacin (IND, 10 mg/kg, i.p.), (3) model (L-NAME + IND + SAMA (12.5 ml/kg, i.p.)), (4-6) TSC 10, 20, and 40 mg/kg/day, 7 days, i.p., and L-NAME + IND + SAMA, (7) N-acetylcysteine (NAC, 125 mg/kg/day, 7 days, i.p.) and L-NAME + IND + SAMA, (8) TSC alone (40 mg/kg/day, 7 days, i.p.). Rats were injected with L-NAME, IND, and SAMA 40 h after water deprivation. SAMA caused the enhancement of histopathological damage in kidney tissue, biochemical factors (serum blood urea nitrogen and creatinine), and oxidative stress. Moreover, SAMA increased inflammation (TNF-α), apoptosis proteins (Caspase 3-cleaved and Bax/Bcl-2 ratio), and autophagy markers (Beclin-1 and LC3 II/I ratio). TSC declined biochemical factors and oxidative stress. Also, TSC 40 mg/kg decreased histopathological damage, inflammation, apoptosis, and autophagy markers. This study demonstrated that TSC has nephroprotective effects through anti-oxidant, anti-inflammatory, and anti-apoptotic properties, as well as regulating autophagy.
Collapse
Affiliation(s)
- Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - BiBi Marjan Razavi
- Pharmaceutical Research Centre, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Centre, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sakineh Amouian
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Ghasemzadeh Rahbardar
- Pharmaceutical Research Centre, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Centre, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wu J, Shen J, Wang W, Jiang N, Jin H, Che X, Ni Z, Fang Y, Mou S. A novel contrast-induced acute kidney injury mouse model based on low-osmolar contrast medium. Ren Fail 2022; 44:1345-1355. [PMID: 35938700 PMCID: PMC9367657 DOI: 10.1080/0886022x.2022.2108449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The contrast-induced acute kidney injury (CI-AKI) has been becoming the third common cause of hospital-acquired acute kidney injury. An ideal animal model is essential for understanding the pathophysiology of CI-AKI. Previous CI-AKI studies were mostly performed on rats with high-osmolar contrast medium (HOCM), which is unsuitable for transgenic researches. This study provides a novel, efficient and reproducible CI-AKI model which was developed in mouse by administrating a low-osmolar contrast medium (LOCM). First of all, we applied the frequently used pretreatments (uninephrectomy and water deprivation), which combined with HOCM on rats could induce CI-AKI, on mice with LOCM. Secondly, we attempted to find a novel pretreatment suitable for mouse and LOCM by combining two classic pretreatments(uninephrectomy, water deprivation and furosemide administration). Finally, we evaluate the kidney damage of the novel model. We found that this mouse model possessed a significant reduction in renal function, severe renal tissue damage, and increased renal tubular cells apoptosis, indicating that LOCM is a feasible inducer for CI-AKI mice model. Taken together, we found that uninephrectomy (UPHT) combined with 24 h water deprivation and furosemide administration 20 min before LOCM (iohexol, 10 ml/kg) application is a feasible pretreatment to establish a novel CI-AKI mouse model.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wanpeng Wang
- Department of Nephrology, Lianshui People's Hospital, Lianshui, China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haijiao Jin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiajing Che
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Horvath G, Reglodi D, Fabian E, Opper B. Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death. Int J Mol Sci 2022; 23:ijms23094953. [PMID: 35563353 PMCID: PMC9100246 DOI: 10.3390/ijms23094953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated as a hypothalamic peptide based on its efficacy to increase adenylate cyclase (AC) activity. It has a widespread distribution throughout the body including the nervous system and peripheral organs, where PACAP exerts protective effects both in vivo and in vitro through its anti-apoptotic, anti-inflammatory, and antioxidant functions. The aim of the present paper was to review the currently available literature regarding the effects of PACAP on cell death in vitro in neural and non-neural cells. Among others, its effect on apoptosis can be detected in cerebellar granule cells against different toxic stimuli. Different neural cell types from the cerebral cortex are also prevented from cell death. PACAP also shows effects on cell death in cells belonging to the peripheral nervous system and protects both neural and non-neural cells of sensory organs. In addition, cell survival-promoting effect can be observed in different peripheral organ systems including cardiovascular, immune, respiratory, gastrointestinal, urinary, and reproductive systems. The studies summarized here indicate its noteworthy effect on cell death in different in vitro models, suggesting PACAP’s potential therapeutic usage in several pathological conditions.
Collapse
|
4
|
Zinc Preconditioning Provides Cytoprotection following Iodinated Contrast Media Exposure in In Vitro Models. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6686803. [PMID: 33679268 PMCID: PMC7904368 DOI: 10.1155/2021/6686803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022]
Abstract
Methods Normal human proximal renal kidney cells (HK-2) were preconditioned with either increasing doses of ZnCl2 or control. Following this preconditioning, cells were exposed to increasing concentrations of Iohexol 300 mg I2/ml for four hours. Key outcome measures included cell survival (MTT colorimetric assay) and ROS generation (H2DCFDA fluorescence assay). Results Contrast media induced a dose-dependent reduction in survival of HK-2 cells. Compared to control, contrast media at 150, 225, and 300 mg I2/ml resulted in 69.5% (SD 8.8%), 37.3% (SD 4.8%), and 4.8% (SD 6.6%) cell survival, respectively (p < 0.001). Preconditioning with 37.5 μM and 50 μM ZnCl2 increased cell survival by 173% (SD 27.8%) (p < 0.001) and 219% (SD 32.2%) (p < 0.001), respectively, compared to control preconditioning. Zinc preconditioning resulted in a reduction of ROS generation. Zinc pre-conditioning with 37.5 μM μM ZnCl2 reduced ROS generation by 46% (p < 0.001) compared to control pre-conditioning. Conclusions Zinc preconditioning reduces oxidative stress following exposure to radiographic contrast media which in turn results in increased survival of renal cells. Translation of this in vitro finding in animal models will lay the foundation for future use of zinc preconditioning against contrast induced nephropathy.
Collapse
|
5
|
Curnow AC, Gonsalez SR, Gogulamudi VR, Visniauskas B, Simon EE, Gonzalez AA, Majid DSA, Lara LS, Prieto MC. Low Nitric Oxide Bioavailability Increases Renin Production in the Collecting Duct. Front Physiol 2020; 11:559341. [PMID: 33281610 PMCID: PMC7705222 DOI: 10.3389/fphys.2020.559341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
In the kidney, the stimulation of renin production by the collecting duct (CD-renin) contributes to the development of hypertension. The CD is a major nephron segment for the synthesis of nitric oxide (NO), and low NO bioavailability in the renal medulla is associated with hypertension. However, it is unknown whether NO regulates renin production in the CD. To test the hypothesis that low intrarenal NO levels stimulate the production of CD-renin, we first examined renin expression in the distal nephron segments of CD-eNOS deficient mice. In these mice, specific CD-renin immunoreactivity was increased compared to wild-type littermates; however, juxtaglomerular (JG) renin was not altered. To further assess the intracellular mechanisms involved, we then treated M-1 cells with either 1 mM L-NAME (L-arginine analog), an inhibitor of NO synthase activity, or 1 mM NONOate, a NO donor. Both treatments increased intracellular renin protein levels in M-1 cells. However, only the inhibition of NOS with L-NAME stimulated renin synthesis and secretion as reflected by the increase in Ren1C transcript and renin protein levels in the extracellular media, respectively. In addition, NONOate induced a fast mobilization of cGMP and intracellular renin accumulation. These response was partially prevented by guanylyl cyclase inhibition with ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1]. Accumulation of intracellular renin was blocked by protein kinase G (PKG) and protein kinase C (PKC) inhibitors. Our data indicate that low NO bioavailability increases CD-renin synthesis and secretion, which may contribute to the activation of intrarenal renin angiotensin system.
Collapse
Affiliation(s)
- Andrew C. Curnow
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Sabrina R. Gonsalez
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Eric E. Simon
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dewan S. A. Majid
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lucienne S. Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
6
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
7
|
The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is Protective in Inflammation and Oxidative Stress-Induced Damage in the Kidney. Int J Mol Sci 2019; 20:ijms20194944. [PMID: 31591326 PMCID: PMC6801442 DOI: 10.3390/ijms20194944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide with a widespread distribution throughout the entire body including the urinary system. PACAP exerts protective actions in different injury models related to several organ systems. Its protective effect is mainly based on its antiapoptotic, anti-inflammatory and antioxidant effects. The present review aims to summarize the effects of PACAP in pathologies associated with inflammation and oxidative stress-induced damage in the kidney. Both in vitro and in vivo data are available proving its protective actions against oxidative stress, hypoxia, renal ischemia/reperfusion, diabetic nephropathy, myeloma kidney injury, amyloidosis and different types of drug-induced nephropathies. Data showing the nephroprotection by PACAP emphasize the potential of PACAP’s therapeutic use in various renal pathologies.
Collapse
|
8
|
Starr CG, Maderdrut JL, He J, Coy DH, Wimley WC. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides 2018; 104:35-40. [PMID: 29654809 PMCID: PMC5982112 DOI: 10.1016/j.peptides.2018.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence.
Collapse
Affiliation(s)
- Charles G Starr
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jing He
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
9
|
Subramaniam V, Chuang G, Xia H, Burn B, Bradley J, Maderdrut JL, Coy DH, Varner KJ. Pituitary adenylate cyclase-activating polypeptide (PACAP) protects against mitoxantrone-induced cardiac injury in mice. Peptides 2017; 95:25-32. [PMID: 28720396 PMCID: PMC5568240 DOI: 10.1016/j.peptides.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 12/30/2022]
Abstract
Mitoxantrone (MXT) is an androstenedione that is used to treat cancers and progressive forms of multiple sclerosis; however, its use is limited by its cardiotoxicity. Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the secretin/growth hormone-releasing hormone/vasoactive intestinal peptide family and has many functions, including cytoprotection and immunosuppression. We tested the hypothesis that PACAP can protect against MXT-induced cardiotoxicity in mice. Female BALB/c mice were treated once weekly for 4 weeks with saline (n=14) or MXT (3mg/kg, i.p.; n=14). Half of the mice in each group received PACAP (10μg, i.p.) 1h before and 24 and 48h after MXT, while the remaining mice received injections of saline on the same schedule. Echocardiography was used to assess cardiac structure and function. In mice treated with MXT and saline, body weight was significantly reduced after the third dose of MXT. PACAP significantly attenuated the reduction in body weight; however, the weights did not return to control level. Compared to controls, MXT-treated mice had significantly increased left ventricular (LV) diameter and LV volume and decreased LV posterior wall thickness. Fractional shortening (FS) and ejection fraction (EF) were also significantly decreased. Treatment with PACAP prevented MXT-induced LV dilation and significantly attenuated the reductions in FS and EF, although FS and EF did not return to control level. PACAP38 did not prevent MXT-induced decreases in LV posterior wall thickness. MXT dose-dependently decreased the viability of cultured U937 (human leukemia) cells; PACAP did not protect cultured U937 cells from MXT-mediated cell death. In conclusion, PACAP can attenuate MXT-mediated LV dilation and dysfunction in mice.
Collapse
Affiliation(s)
- Venkat Subramaniam
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States
| | - Gin Chuang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States; Cardiovascular Center of Excellence, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States
| | - Brendan Burn
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States
| | - Jessica Bradley
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States; Cardiovascular Center of Excellence, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112-2699, United States
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States; Cardiovascular Center of Excellence, Louisiana State University, Health Sciences Center, New Orleans, LA 70112-1393, United States.
| |
Collapse
|
10
|
Eneman B, Elmonem MA, van den Heuvel LP, Khodaparast L, Khodaparast L, van Geet C, Freson K, Levtchenko E. Pituitary adenylate cyclase-activating polypeptide (PACAP) in zebrafish models of nephrotic syndrome. PLoS One 2017; 12:e0182100. [PMID: 28759637 PMCID: PMC5536324 DOI: 10.1371/journal.pone.0182100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an inhibitor of megakaryopoiesis and platelet function. Recently, PACAP deficiency was observed in children with nephrotic syndrome (NS), associated with increased platelet count and aggregability and increased risk of thrombosis. To further study PACAP deficiency in NS, we used transgenic Tg(cd41:EGFP) zebrafish with GFP-labeled thrombocytes. We generated two models for congenital NS, a morpholino injected model targeting nphs1 (nephrin), which is mutated in the Finnish-type congenital NS. The second model was induced by exposure to the nephrotoxic compound adriamycin. Nephrin RNA expression was quantified and zebrafish embryos were live-screened for proteinuria and pericardial edema as evidence of renal impairment. Protein levels of PACAP and its binding-protein ceruloplasmin were measured and GFP-labeled thrombocytes were quantified. We also evaluated the effects of PACAP morpholino injection and the rescue effects of PACAP-38 peptide in both congenital NS models. Nephrin downregulation and pericardial edema were observed in both nephrin morpholino injected and adriamycin exposed congenital NS models. However, PACAP deficiency was demonstrated only in the adriamycin exposed condition. Ceruloplasmin levels and the number of GFP-labeled thrombocytes remained unchanged in both models. PACAP morpholino injections worsened survival rates and the edema phenotype in both congenital NS models while injection with human PACAP-38 could only rescue the adriamycin exposed model. We hereby report, for the first time, PACAP deficiency in a NS zebrafish model as a consequence of adriamycin exposure. However, distinct from the human congenital NS, both zebrafish models retained normal levels of ceruloplasmin and thrombocytes. We further extend the renoprotective effects of the PACAP-38 peptide against adriamycin toxicity in zebrafish.
Collapse
Affiliation(s)
- Benedicte Eneman
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Mohamed A. Elmonem
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lambertus P. van den Heuvel
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laleh Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Ladan Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Chris van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
11
|
Histopathological Evaluation of Contrast-Induced Acute Kidney Injury Rodent Models. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3763250. [PMID: 27975052 PMCID: PMC5128699 DOI: 10.1155/2016/3763250] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) can occur in 3–25% of patients receiving radiocontrast material (RCM) despite appropriate preventive measures. Often patients with an atherosclerotic vasculature have to receive large doses of RCM. Thus, animal studies to uncover the exact pathomechanism of CI-AKI are needed. Sensitive and specific histologic end-points are lacking; thus in the present review we summarize the histologic appearance of different rodent models of CI-AKI. Single injection of RCM causes overt renal damage only in rabbits. Rats and mice need an additional insult to the kidney to establish a clinically manifest CI-AKI. In this review we demonstrate that the concentrating ability of the kidney may be responsible for species differences in sensitivity to CI-AKI. The most commonly held theory about the pathomechanism of CI-AKI is tubular cell injury due to medullary hypoxia. Thus, the most common additional insult in rats and mice is some kind of ischemia. The histologic appearance is tubular epithelial cell (TEC) damage; however severe TEC damage is only seen if RCM is combined by additional ischemia. TEC vacuolization is the first sign of CI-AKI, as it is a consequence of RCM pinocytosis and lysosomal fusion; however it is not sensitive as it does not correlate with renal function and is not specific as other forms of TEC damage also cause vacuolization. In conclusion, histopathology alone is insufficient and functional parameters and molecular biomarkers are needed to closely monitor CI-AKI in rodent experiments.
Collapse
|
12
|
Almeida LSD, Barboza JR, Freitas FPS, Porto ML, Vasquez EC, Meyrelles SS, Gava AL, Pereira TMC. Sildenafil prevents renal dysfunction in contrast media-induced nephropathy in Wistar rats. Hum Exp Toxicol 2016; 35:1194-1202. [DOI: 10.1177/0960327115626582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Contrast-induced nephropathy (CIN) is an iatrogenic medical event in stable cardiology patients that may lead to acute renal failure. There is no current successful therapy to manage CIN. Increasing evidence in experimental models and humans has suggested that this disease is associated with renal tubular and vascular injury triggered by oxidative stress. Considering the importance of reactive oxygen species (ROS) generation in the pathogenesis of CIN, the goal of the present study was to evaluate the effects of sildenafil on CIN development. Male Wistar rats were divided into control, CIN, and CIN pretreated with sildenafil (50 mg/kg/day). CIN was induced by water deprivation, NG-nitro-L-arginine methyl ester + indomethacin injections (10 mg/kg, intraperitoneally) and intravenous iohexol administration (3 g/kg). Renal function was evaluated through glomerular filtration rate (GFR), renal blood flow (RBF), plasma creatinine, uremia, and proteinuria. Oxidative stress was assessed by flow cytometry for intracellular ROS. Treatment with sildenafil attenuated the marked reduction of GFR and RBF in the CIN group. Moreover, sildenafil treatment in CIN rats reduced plasma creatinine, uremia, and proteinuria. Flow cytometry demonstrated that sildenafil attenuated the ROS production in the CIN group. These data suggest that sildenafil may be a new therapeutic agent to prevent CIN through its ability to preserve renal function and attenuate oxidative stress.
Collapse
Affiliation(s)
- Lais Salles de Almeida
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Jamila Rodrigues Barboza
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Flávia Priscila Santos Freitas
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Marcella Leite Porto
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Elisardo Corral Vasquez
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
- Pharmaceutical Sciences Graduate Program, University of Vila Velha, Vila Velha, ES, Brazil
| | - Silvana Santos Meyrelles
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Agata Lages Gava
- Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Thiago Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, University of Vila Velha, Vila Velha, ES, Brazil
- Federal Institute of Education, Science and Technology, Vila Velha, ES, Brazil
| |
Collapse
|
13
|
Eneman B, van den Heuvel L, Freson K, Van Geet C, Willemsen B, Dijkman H, Levtchenko E. Distribution and Function of PACAP and Its Receptors in the Healthy and Nephrotic Kidney. Nephron Clin Pract 2016; 132:301-11. [PMID: 27050435 DOI: 10.1159/000445035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Plasma deficiency of pituitary adenylate cyclase-activating polypeptide (PACAP) was recently demonstrated in children with nephrotic syndrome (NS). Previous studies have reported an important protective effect of PACAP on kidney proximal tubules. The aim of this study was to explore the expression of PACAP and its receptors PAC1, VPAC1 and VPAC2 in the healthy and nephrotic kidney and to determine if PACAP has an effect on renal proximal tubular cells exposed to albumin. METHODS Expression of PACAP and its receptors was studied using kidney tissue from healthy and nephrotic children, and in 3 human renal cell lines (glomerular microvascular endothelial cells, podocytes and proximal tubular epithelial HK-2 cells). The functionality of the VPAC1 receptor was tested in HK-2 cells, measuring cyclic adenosine monophosphate levels after PACAP exposure. The influence of PACAP on cell viability and transforming growth factor-β1 (TGF-β1) expression was measured in HK-2 cells exposed to albumin, mimicking proteinuria related damage. RESULTS VPAC1 expression was detected in the tubular proximal epithelial cells and in the glomerular podocytes of renal tissue from healthy and nephrotic children. Increased staining for PACAP was found in the proximal tubules of renal sections from children with NS compared to healthy renal sections. Expression and functionality of VPAC1 were demonstrated in HK-2 cells. Finally, PACAP did not alter cell viability or TGF-β1 expression of HK-2 cells exposed to albumin. CONCLUSION VPAC1 is the predominant receptor in the human kidney. The enhanced presence of PACAP in proximal tubular epithelial cells in nephrotic kidneys points to the reabsorption of filtered PACAP. On short term, PACAP has no in vitro effect on cell viability and TGF-β1 expression of proximal tubular epithelial cells exposed to high concentrations of albumin.
Collapse
Affiliation(s)
- Benedicte Eneman
- Pediatric Nephrology, Department of Development and Regeneration, University Hospitals of Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
Bôa ISF, Porto ML, Pereira ACH, Ramos JPL, Scherer R, Oliveira JP, Nogueira BV, Meyrelles SS, Vasquez EC, Endringer DC, Pereira TMC. Resin from Virola oleifera Protects Against Radiocontrast-Induced Nephropathy in Mice. PLoS One 2015; 10:e0144329. [PMID: 26674346 PMCID: PMC4684213 DOI: 10.1371/journal.pone.0144329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022] Open
Abstract
Contrast-induced nephropathy (CIN) is an iatrogenic medical event for which there is not yet a successful therapy. Increasing evidence in rodents has suggested that this disease is associated with renal tubular and vascular injury that is triggered directly by oxidative stress. In the present study, we evaluated whether the antioxidant resin from Virola oleifera (RV) could attenuate renal damage in an experimental mouse model of CIN. Adult male Swiss mice were divided into six groups and pre-treated orally with RV (10, 100 and 300 mg/kg), N-acetylcysteine (200 mg/kg) or vehicle for 5 days before the induction of CIN and Control group. Renal function was assessed by measuring plasma creatinine and urea levels. Additionally, renal oxidative stress and apoptosis/cell viability were determined with flow cytometry. Finally, kidney tissues were sectioned for histopathological examination. In this CIN model, pre-treatment with RV improved renal function, lowered the mortality rate, and reduced oxidative stress and apoptosis in both the medulla and cortex renal cells in a dose-dependent manner. Moreover, the RV treatment had beneficial effects on kidney histopathology that were superior to the standard treatment with N-acetylcysteine. These data suggest that because of its antioxidative and antiapoptotic effects and its ability to preserve renal function, resin from Virola oleifera may have potential as a new therapeutic approach for preventing CIN.
Collapse
Affiliation(s)
- Igor Santos Fonte Bôa
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Marcella Leite Porto
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | | | | | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Jairo Pinto Oliveira
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Silvana Santos Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Elisardo Corral Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Denise Coutinho Endringer
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Thiago Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
- * E-mail:
| |
Collapse
|