1
|
Yu ZL, Cai ZH, Zheng JT, Jiang HY, Zhou YQ, Wong NK, Fu HB, Hong XB. Serum fibroblast growth factor-2 levels complement vital biomarkers for diagnosing heart failure. BMC Cardiovasc Disord 2024; 24:109. [PMID: 38355415 PMCID: PMC10868019 DOI: 10.1186/s12872-024-03768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Early diagnosis of atrial fibrillation is important as it is crucial for improving patient outcomes. Fibroblast growth factor-2 (FGF2) may serve as a diagnostic biomarker for heart failure due to its ability to promote cardiac fibrosis and hypertrophy; however, the relationship between FGF2 concentration and heart failure is unclear. Therefore, this study aimed to explore whether FGF2 could aid in distinguishing patients with heart failure from healthy controls and those with dyspnea without heart failure. Additionally, to evaluate the possible correlation between serum FGF2 levels and its diagnostic parameters in patients with heart failure. METHODS Plasma FGF2 concentration was measured in 114 patients with a complaint of dyspnea (enrolled in the study between January 2022 and August 2022). Based on heart failure diagnosis, the patients were assigned to three groups, as follows: heart failure (n = 80), non-heart-failure dyspnea (n = 34), and healthy controls (n = 36), following physical examination. Possible correlations between serum FGF2 levels and other prognostic parameters in patients with heart failure were analyzed. RESULTS Serum FGF2 levels were higher in patients with heart failure (125.60 [88.95, 183.40] pg/mL) than in those with non-heart-failure dyspnea (65.30 [28.85, 78.95] pg/mL) and healthy controls (78.90 [60.80, 87.20] pg/mL) (p < 0.001). Receiver operating characteristic curve analysis identified FGF2 concentration as a significant predictor in heart failure diagnosis, with an area under the curve of 0.8693 (p < 0.0001). Importantly, in the heart failure group, serum FGF2 concentrations correlated with key prognostic parameters for heart failure, such as reduced left ventricular ejection fraction and elevated serum levels of N-terminal pro-B-type natriuretic peptide. CONCLUSIONS Elevated serum FGF2 level is strongly associated with an increased risk of heart failure and could serve as a useful biomarker to complement vital diagnostic parameters for heart failure.
Collapse
Affiliation(s)
- Z L Yu
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Z H Cai
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - J T Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - H Y Jiang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Y Q Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - N K Wong
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - H B Fu
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China.
| | - X B Hong
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Matsiukevich D, House SL, Weinheimer C, Kovacs A, Ornitz DM. Fibroblast growth factor receptor signaling in cardiomyocytes is protective in the acute phase following ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:1011167. [PMID: 36211556 PMCID: PMC9539275 DOI: 10.3389/fcvm.2022.1011167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are expressed in multiple cell types in the adult heart. Previous studies have shown a cardioprotective effect of some FGF ligands in cardiac ischemia-reperfusion (I/R) injury and a protective role for endothelial FGFRs in post-ischemic vascular remodeling. To determine the direct role FGFR signaling in cardiomyocytes in acute cardiac I/R injury, we inactivated Fgfr1 and Fgfr2 (CM-DCKO) or activated FGFR1 (CM-caFGFR1) in cardiomyocytes in adult mice prior to I/R injury. In the absence of injury, inactivation of Fgfr1 and Fgfr2 in adult cardiomyocytes had no effect on cardiac morphometry or function. When subjected to I/R injury, compared to controls, CM-DCKO mice had significantly increased myocyte death 1 day after reperfusion, and increased infarct size, cardiac dysfunction, and myocyte hypertrophy 7 days after reperfusion. No genotype-dependent effect was observed on post-ischemic cardiomyocyte cross-sectional area and vessel density in areas remote to the infarct. By contrast, transient activation of FGFR1 signaling in cardiomyocytes just prior to the onset of ischemia did not affect outcomes after cardiac I/R injury at 1 day and 7 days after reperfusion. These data demonstrate that endogenous cell-autonomous cardiomyocyte FGFR signaling supports the survival of cardiomyocytes in the acute phase following cardiac I/R injury and that this cardioprotection results in continued improved outcomes during cardiac remodeling. Combined with the established protective role of some FGF ligands and endothelial FGFR signaling in I/R injury, this study supports the development of therapeutic strategies that promote cardiomyocyte FGF signaling after I/R injury.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Stacey L. House
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Emergency Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Carla Weinheimer
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - David M. Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Dolivo DM. Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature. J Mol Med (Berl) 2022; 100:847-860. [PMID: 35484303 DOI: 10.1007/s00109-022-02194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.
Collapse
|
4
|
Srisakuldee W, Nickel BE, Fandrich RR, Zhang F, Pasumarthi KBS, Kardami E. A Cardiac Mitochondrial FGFR1 Mediates the Antithetical Effects of FGF2 Isoforms on Permeability Transition. Cells 2021; 10:2735. [PMID: 34685716 PMCID: PMC8534529 DOI: 10.3390/cells10102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria, abundant organelles in high energy demand cells such as cardiomyocytes, can determine cell death or survival by regulating the opening of mitochondrial permeability transition pore, mPTP. We addressed the hypothesis that the growth factor FGF2, known to reside in intracellular locations, can directly influence mitochondrial susceptibility to mPTP opening. Rat cardiac subsarcolemmal (SSM) or interfibrillar (IFM) mitochondrial suspensions exposed directly to rat 18 kDa low molecular weight (Lo-) FGF2 isoform displayed increased resistance to calcium overload-induced mPTP, measured spectrophotometrically as "swelling", or as cytochrome c release from mitochondria. Inhibition of mitochondrial protein kinase C epsilon abrogated direct Lo-FGF2 mito-protection. Exposure to the rat 23 kDa high molecular weight (Hi) FGF2 isoform promoted cytochrome c release from SSM and IFM under nonstressed conditions. The effect of Hi-FGF2 was prevented by mPTP inhibitors, pre-exposure to Lo-FGF2, and okadaic acid, a serine/threonine phosphatase inhibitor. Western blotting and immunoelectron microscopy pointed to the presence of immunoreactive FGFR1 in cardiac mitochondria in situ. The direct mito-protective effect of Lo-FGF2, as well as the deleterious effect of Hi-FGF2, were prevented by FGFR1 inhibitors and FGFR1 neutralizing antibodies. We propose that intracellular FGF2 isoforms can modulate mPTP opening by interacting with mito-FGFR1 and relaying isoform-specific intramitochondrial signal transduction.
Collapse
Affiliation(s)
- Wattamon Srisakuldee
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
| | - Barbara E. Nickel
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
| | - Robert R. Fandrich
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Feixong Zhang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (F.Z.); (K.B.S.P.)
| | - Kishore B. S. Pasumarthi
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (F.Z.); (K.B.S.P.)
| | - Elissavet Kardami
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Elimination of endogenous high molecular weight FGF2 prevents pressure-overload-induced systolic dysfunction, linked to increased FGFR1 activity and NR1D1 expression. Cell Tissue Res 2021; 385:753-768. [PMID: 34057573 DOI: 10.1007/s00441-021-03465-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 2 (FGF2), produced as high (Hi-) and low (Lo-) molecular weight isoforms, is implicated in cardiac response to injury. The role of endogenous FGF2 isoforms during chronic stress is not well defined. We investigated the effects of endogenous Hi-FGF2 in a mouse model of simulated pressure-overload stress achieved by transverse aortic constriction (TAC) surgery. Hi-FGF2 knockout mice, expressing only Lo-FGF2, FGF2(Lo), and wild-type mice, FGF2(WT), expressing both Hi-FGF2 and Lo-FGF2, were used. By echocardiography, a decline in systolic function was observed in FGF2(WT) but not FGF2(Lo) mice compared to corresponding sham-operated animals at 4-8 weeks post-TAC surgery. TAC surgery increased markers of myocardial stress/damage including B-type natriuretic peptide (BNP) and the pro-cell death protein BCL2/adenovirus E1B 19 kDa protein-interacting protein-3 (Bnip3) in FGF2(WT) but not FGF2(Lo) mice. In FGF2(Lo) mice, cardiac levels of activated FGF receptor 1 (FGFR1), and downstream signals, including phosphorylated mTOR and p70S6 kinase, were elevated post-TAC. Finally, NR1D1 (nuclear receptor subfamily 1 group D member 1), implicated in cardioprotection from pressure-overload stress, was downregulated or upregulated in the presence or absence, respectively, of Hi-FGF2 expression, post-TAC surgery. In wild-type cardiomyocyte cultures, endothelin-1 (added to simulate pressure-overload signals) caused NR1D1 downregulation and BNP upregulation, similar to the effect of TAC surgery on the FGF2(WT) mice. The NR1D1 agonist SR9009 prevented BNP upregulation, simulating post-TAC findings in FGF2(Lo) mice. We propose that elimination of Hi-FGF2 is cardioprotective during pressure-overload by increasing FGFR1-associated signaling and NR1D1 expression.
Collapse
|
6
|
Freiin von Hövel F, Kefalakes E, Grothe C. What Can We Learn from FGF-2 Isoform-Specific Mouse Mutants? Differential Insights into FGF-2 Physiology In Vivo. Int J Mol Sci 2020; 22:ijms22010390. [PMID: 33396566 PMCID: PMC7795026 DOI: 10.3390/ijms22010390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2), ubiquitously expressed in humans and mice, is functionally involved in cell growth, migration and maturation in vitro and in vivo. Based on the same mRNA, an 18-kilo Dalton (kDa) FGF-2 isoform named FGF-2 low molecular weight (FGF-2LMW) isoform is translated in humans and rodents. Additionally, two larger isoforms weighing 21 and 22 kDa also exist, summarized as the FGF-2 high molecular weight (FGF-2HMW) isoform. Meanwhile, the human FGF-2HMW comprises a 22, 23, 24 and 34 kDa protein. Independent studies verified a specific intracellular localization, mode of action and tissue-specific spatiotemporal expression of the FGF-2 isoforms, increasing the complexity of their physiological and pathophysiological roles. In order to analyze their spectrum of effects, FGF-2LMW knock out (ko) and FGF-2HMWko mice have been generated, as well as mice specifically overexpressing either FGF-2LMW or FGF-2HMW. So far, the development and functionality of the cardiovascular system, bone formation and regeneration as well as their impact on the central nervous system including disease models of neurodegeneration, have been examined. This review provides a summary of the studies characterizing the in vivo effects modulated by the FGF-2 isoforms and, thus, offers a comprehensive overview of its actions in the aforementioned organ systems.
Collapse
Affiliation(s)
- Friederike Freiin von Hövel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany;
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Ekaterini Kefalakes
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
| | - Claudia Grothe
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Bünteweg 2, D-30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-532-2897; Fax: +49-511-532-2880
| |
Collapse
|
7
|
Schreckenberg R, Horn AM, da Costa Rebelo RM, Simsekyilmaz S, Niemann B, Li L, Rohrbach S, Schlüter KD. Effects of 6-months' Exercise on Cardiac Function, Structure and Metabolism in Female Hypertensive Rats-The Decisive Role of Lysyl Oxidase and Collagen III. Front Physiol 2017; 8:556. [PMID: 28824452 PMCID: PMC5541302 DOI: 10.3389/fphys.2017.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose: According to the current therapeutic guidelines of the WHO physical activity and exercise are recommended as first-line therapy of arterial hypertension. Previous results lead to the conclusion, however, that hearts of spontaneously hypertensive rats (SHR) with established hypertension cannot compensate for the haemodynamic stresses caused by long-term exercise. The current study was initiated to investigate the effects of aerobic exercise on the cardiac remodeling as the sole therapeutic measure before and during hypertension became established. Methods: Beginning at their 6th week of life, six SHR were provided with a running wheel over a period of 6 months. Normotensive Wistar rats served as non-hypertensive controls. Results: In Wistar rats and SHR, voluntary exercise led to cardioprotective adaptation reactions that were reflected in increased mitochondrial respiration, reduced heart rate and improved systolic function. Exercise also had antioxidant effects and reduced the expression of maladaptive genes (TGF-β1, CTGF, and FGF2). However, at the end of the 6-months' training, the echocardiograms revealed that SHR runners developed a restrictive cardiomyopathy. The induction of lysyl oxidase (LOX), which led to an increased network of matrix proteins and a massive elevation in collagen III expression, was identified as the underlying cause. Conclusions: Running-induced adaptive mechanisms effectively counteract the classic remodeling of hearts subject to chronic pressure loads. However, with sustained running stress, signaling pathways are activated that have a negative effect on left ventricular relaxation. Our data suggest that the induction of LOX may play a causative role in the diagnosed filling disorder in trained SHR.
Collapse
Affiliation(s)
- Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | - Anja-Maria Horn
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | | | - Sakine Simsekyilmaz
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum DüsseldorfDüsseldorf, Germany
| | - Bernd Niemann
- Klinik für Herz-, Kinderherz- und Gefäßchirurgie, Universitätsklinikum GiessenGiessen, Germany
| | - Ling Li
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | | |
Collapse
|
8
|
Gupta J, Mitra N, Townsend RR, Fischer M, Schelling JR, Margolis DJ. Variants in genes belonging to the fibroblast growth factor family are associated with lower extremity amputation in non-Hispanic whites: Findings from the chronic renal insufficiency cohort study. Wound Repair Regen 2016; 24:705-11. [PMID: 27237708 PMCID: PMC5098555 DOI: 10.1111/wrr.12447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/25/2016] [Indexed: 01/13/2023]
Abstract
Diabetes is the major risk factor for nontraumatic lower extremity amputation (LEA). The role of genetic polymorphisms in predisposing diabetics to impaired wound healing leading to LEA has not been sufficiently explored. We investigated the association between a set of genes belonging to the angiogenesis/wound repair pathway with LEA in the Chronic Renal Insufficiency Cohort, a study of adults with chronic kidney disease (CKD) that includes a subgroup with diabetes. This study was performed on 3,772 Chronic Renal Insufficiency Cohort participants who were genotyped on the ITMAT-Broad-CARe array chip. A total of 1,017 single-nucleotide polymorphisms (SNPs) in 22 genes belonging to the angiogenesis/would repair pathway were investigated. LEA was determined from patient self-report. The association between genetic variants and LEA status was examined using logistic regression and additive genetic models after stratifying the cohort by race/ethnicity and diabetic status. Unadjusted analyses as well as analyses adjusted for age, sex, estimated glomerular filtration rate, body mass index, peripheral vascular disease, hemoglobin A1c, and population stratification were performed. In non-Hispanic white participants with diabetes, rs11938826 and rs1960669, both intronic SNPs in the gene basic fibroblast growth factor-2 (FGF2), were significantly associated with LEA in covariate-adjusted analysis (OR: 2.83 (95% CI: 1.73, 4.62); p-value: 0.000034; Bonferroni adjusted p-value: 0.0006) and (OR: 2.61 (95% CI: 1.48, 4.61); p-value: 0.00095; Bonferroni adjusted p-value: 0.02). In the same subgroup, rs10883688, an FGF8 SNP of unknown functional effect, was also associated with LEA (OR: 1.72 (95% Confidence Interval: 1.14, 2.6); p-value: 0.00999; Bonferroni adjusted p-value: 0.04). No statistically significant associations were identified in the other ethnic groups. In conclusion, variant/s in FGF2 and FGF8 may predispose diabetics with CKD to LEA. Dysregulation of the FGF2 gene represents an opportunity to understand further, and possibly intervene upon, mechanisms of wound healing in diabetics with CKD.
Collapse
Affiliation(s)
- Jayanta Gupta
- Division of Biostatistics and Epidemiology, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Nandita Mitra
- Center for Clinical Epidemiology and Biostatistics and the Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raymond R Townsend
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Fischer
- Department of Medicine, Jesse Brown VA Medical Center and University of Illinois Hospital and Health Sciences System, Chicago, Illinois
- Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr, VA Hospital, Hines, Illinois
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University and Division of Nephrology and Hypertension, MetroHealth Medical Center, Cleveland, Ohio
| | - David J Margolis
- Center for Clinical Epidemiology and Biostatistics and the Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|