1
|
Li Q, Zhao W, Guo H, Yang J, Zhang J, Liu M, Xu T, Chen Y, Zhang L. Metal-Organic Framework Traps with Record-High Bilirubin Removal Capacity for Hemoperfusion Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25546-25556. [PMID: 32393019 DOI: 10.1021/acsami.0c03859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adsorption-based hemoperfusion has been widely used to remove toxins from the blood of patients suffering acute liver failure (ALF). However, its detoxification effect has been severely hampered by the unsatisfactory adsorption performance of clinically used porous adsorbents, such as activated carbon (AC) and adsorption resin. Herein, two cage-based metal-organic frameworks (MOFs), PCN-333 (constructed from 4,4,4-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB) ligands and Al3 metal clusters) and MOF-808 (constructed from 1,3,5-benzenetricarboxylic acid (H3BTC) ligands and Zr6 metal clusters), are introduced for highly efficient hemoperfusion. They possess negligible hemolytic activity and can act as "bilirubin traps" to achieve outstanding adsorption performance toward bilirubin, a typical toxin related to ALF. Notably, PCN-333 shows a record-high adsorption capacity (∼1003.8 mg g-1) among various bilirubin adsorbents previously reported. More importantly, they can efficiently adsorb bilirubin in bovine serum albumin (BSA) solution or even in 100% fetal bovine serum (FBS) due to their high selectivity. Strikingly, the adsorption rate and capacity of PCN-333 in biological solutions are approximately four times faster and 69 times higher than those of clinical AC, respectively. Findings in this work pave a new avenue to overcome the challenge of low adsorption efficiency and capacity in hemoperfusion therapy.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Min Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Yisheng Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| |
Collapse
|
6
|
Leung BO, Yang Z, Wu SSH, Chou KC. Role of interfacial water on protein adsorption at cross-linked polyethylene oxide interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5724-5728. [PMID: 22390193 DOI: 10.1021/la204805x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy was used to study the structure of water at cross-linked PEO film interfaces in the presence of human serum albumin (HSA) protein. Although PEO is charge neutral, the PEO film/water interface exhibited an SFG signal of water similar to that of a highly charged water/silica interface, signifying the presence of ordered water. Ordered water molecules were observed not only at the water/PEO interface, but also within the PEO film. It indicates that the PEO and water form an ordered hydrogen-bonded network extending from the bulk PEO film into liquid water, which can provide an energy barrier for protein adsorption. Upon exposure to the protein solution, the SFG spectra of water at the water/PEO interface remained nearly unperturbed. For comparison, the SFG spectra of water/silica and water/polystyrene interfaces were also studied with and without HSA in the solution. The SFG spectra of the interfacial water were correlated with the amount of protein adsorbed on the surfaces using fluorescence microscopy, which showed that the amount of protein adsorbed on the PEO film was about 10 times less than that on a polystyrene film and 3 times less than that on silica.
Collapse
Affiliation(s)
- Bonnie O Leung
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
8
|
Yu Z, Wu R, Zou H. [Preparation of bovine serum albumin immobilized adsorbent for specific adsorption of bilirubin]. Se Pu 2010; 28:291-5. [PMID: 20549981 DOI: 10.3724/sp.j.1123.2010.00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Serum bilirubin concentration is greatly elevated in certain diseases such as hyperbilirubinemia and severe hepatitis. Lowering the level of bilirubin is one of the major targets of many therapies such as plasma exchange and hemoperfusion. In this study, a bilirubin specific adsorbent was prepared by covalently immobilizing bovine serum albumin (BSA) onto macroporous poly (glycidyl methacrylate-co-trimethylolpropane trimethacrylate) microspheres. The resulting BSA immobilized adsorbent (BIA) demonstrated good performance in adsorption of bilirubin with an adsorption capacity of 48.7 mg/g. Presence of BSA in bilirubin solution significantly lowered the adsorption capacity of the adsorbent due to the tight binding of bilirubin onto BSA. Adsorption performance of the adsorbent for bilirubin was improved with the elevation of temperature. The adsorbent demonstrated good stability even after 31 d of storage at - 80 degrees C in that there was almost no change in adsorption capacity for bilirubin. These results indicated that the prepared BSA immobilized adsorbent could be an alternative choice for specific adsorption of bilirubin.
Collapse
Affiliation(s)
- Zhiyuan Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | |
Collapse
|
12
|
Bayramoğlu G, Yakup Arica M. Surface energy components of a dye-ligand immobilized pHEMA membranes: Effects of their molecular attracting forces for non-covalent interactions with IgG and HSA in aqueous media. Int J Biol Macromol 2005; 37:249-56. [PMID: 16405992 DOI: 10.1016/j.ijbiomac.2005.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/20/2005] [Accepted: 12/02/2005] [Indexed: 11/19/2022]
Abstract
In the present paper, we report the study of the adsorption behaviour of human immunoglobulin G (IgG), human serum albumin (HSA) and polyethylenimine (PEI) onto surfaces of Procion Green HE-4BD (PG) immobilized poly(hydroxyethylmethacrylate) (pHEMA) membranes. The adsorption behaviour of the IgG and HSA onto surfaces of the PG-PEI complexed membrane was also studied. Surface wettability and hydrophilicity of all the membranes were investigated by static contact angle measurements. The measurements of the contact angle to various test liquids, i.e., water, glycerol, formamide, diiodomethane (DIM) and ethylene glycol on the investigated membranes were made by sessile drop method. In accordance to the Young equation, the smaller the surface tension of the test liquid, the smaller becomes the contact angles measured on all the investigated membranes surfaces. The highest contact angles were obtained with water, whereas ethylene glycol gave the lowest contact angles for all the tested membranes. Component and parameters of the surface free energy of all the investigated membranes were calculated from measured contact angle values using two methods (the geometric mean by Fowkes and acid-base by van Oss). HSA adsorption was enhanced after complexation of PEI with the immobilized dye-ligand. The adsorption of proteins and PEI significantly changed both the contact angles and component of surface free energies of the investigated membranes.
Collapse
Affiliation(s)
- Gülay Bayramoğlu
- Biochemical Processing and Biomaterial Research Laboratory, Faculty of Science, Kirikkale University, 71450 Yahşihan, Kirikkale, Turkey
| | | |
Collapse
|