Iscen A, Forero-Martinez NC, Valsson O, Kremer K. Acrylic Paints: An Atomistic View of Polymer Structure and Effects of Environmental Pollutants.
J Phys Chem B 2021;
125:10854-10865. [PMID:
34524824 PMCID:
PMC8488938 DOI:
10.1021/acs.jpcb.1c05188]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Most of the artwork
and cultural heritage objects are stored in
museums under conditions that are difficult to monitor. While advanced
technologies aim to control and prevent the degradation of cultural
heritage objects in line with preventive conservation measures, there
is much to be learned in terms of the physical processes that lead
to the degradation of the synthetic polymers that form the basis of
acrylic paints largely used in contemporary art. In museums, stored
objects are often exposed to temperature and relative humidity fluctuations
as well as airborne pollutants such as volatile organic compounds
(VOCs). The glass transition of acrylic paints is below room temperature;
while low temperatures may cause cracking, at high temperatures the
sticky surface of the paint becomes vulnerable to pollutants. Here
we develop fully atomistic models to understand the structure of two
types of acrylic copolymers and their interactions with VOCs and water.
The structure and properties of acrylic copolymers are slighlty modified
by incorporation of a monomer with a longer side chain. With favorable
solvation free energies, once absorbed, VOCs and water interact with
the polymer side chains to form hydrogen bonds. The cagelike structure
of the polymers prevents the VOCs and water to diffuse freely below
the glass transition temperature. In addition, our model forms the
foundation for developing mesoscopic and continuum models that will
allow us to access longer time and length scales to further our understanding
of the degradation of artwork.
Collapse