1
|
Amini MA, Ahmed T, Liu FCF, Abbasi AZ, Soeandy CD, Zhang RX, Prashad P, Cummins CL, Rauth AM, Henderson JT, Wu XY. Exploring the transformability of polymer-lipid hybrid nanoparticles and nanomaterial-biology interplay to facilitate tumor penetration, cellular uptake and intracellular targeting of anticancer drugs. Expert Opin Drug Deliv 2021; 18:991-1004. [PMID: 33703991 DOI: 10.1080/17425247.2021.1902984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Successful delivery of anticancer drugs to intracellular targets requires different properties of the nanocarrier to overcome multiple transport barriers. However, few nanocarrier systems, to date, possess such properties, despite knowledge about the biological fate of inorganic and polymeric nanocarriers in relation to their fixed size, shape and surface properties. Herein, a polymer-lipid hybrid nanoparticle (PLN) system is described with size and shape transformability and its mechanisms of cellular uptake and intracellular trafficking are studied. METHODS Pharmaceutical lipids were screened for use in transformable PLN. Mechanisms of cellular uptake and the role of fatty acid-binding proteins in intracellular trafficking of PLN were investigated in breast cancer cells. Intra-tumoral penetration and retention of doxorubicin (DOX) were evaluated by confocal microscopy. RESULTS The lead PLNs showed time-dependent size reduction and shape change from spherical to spiky shape. This transformability of PLNs and lipid trafficking pathways facilitated intracellular transport of DOX-loaded PLN (DOX-PLN) into mitochondria and nuclei. DOX-PLN significantly increased DOX penetration and retention over free DOX or non-transformable liposomal DOX particles at 4 h post-intravenous administration. CONCLUSION Transformability of PLN and lipid-biology interplay can be exploited to design new nanocarriers for effective drug delivery to tumor cells and intracellular targets.
Collapse
Affiliation(s)
- Mohammad Ali Amini
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Taksim Ahmed
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Azhar Z Abbasi
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Chesarahmia Dojo Soeandy
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Rui Xue Zhang
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Preethy Prashad
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Cheewatanakornkool K, Niratisai S, Manchun S, Dass CR, Sriamornsak P. Characterization and in vitro release studies of oral microbeads containing thiolated pectin-doxorubicin conjugates for colorectal cancer treatment. Asian J Pharm Sci 2017; 12:509-520. [PMID: 32104364 PMCID: PMC7032137 DOI: 10.1016/j.ajps.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Novel oral microbeads were developed based on a biopolymer-drug conjugate of doxorubicin (DOX) conjugated with thiolated pectin via reducible disulfide bonds. The microbeads were fabricated by ionotropic gelation with cations such as Al3+, Ca2+ and Zn2+. The results showed that using zinc acetate can produce the strongest microbeads with spherical shape. However, the microbeads prepared from thiolated pectin-DOX conjugate were very soft and irregular in shape. To produce more spherical microbeads with suitable strength, the native pectin was then added to the formulations. The particle size of the microbeads ranged from 0.87 to 1.14 mm. The morphology of the microbeads was characterized by optical and scanning electron microscopy. DOX was still in crystalline form when used in preparing the microbeads, as confirmed by powder X-ray diffractometry. Drug release profiles showed that the microbeads containing thiolated pectin-DOX conjugate exhibited reduction-responsive character; in reducing environments, the thiolated pectin-DOX conjugate could uncouple resulting from a cleavage of the disulfide linkers and consequently release the DOX. The best-fit release kinetics of the microbeads containing thiolated pectin-DOX conjugate, in the medium without reducing agent, fit the Korsmeyer-Peppas model while those in the medium with reducing agent fit a zero-order release model. These results suggested that the microbeads containing thiolated pectin-DOX conjugate may be a promising platform for cancer-targeted delivery of DOX, exploiting the reducing environment typically found in tumors.
Collapse
Affiliation(s)
- Kamonrak Cheewatanakornkool
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sathit Niratisai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Somkamol Manchun
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Thailand Institute of Scientific and Technological Research, Klong Luang, Pathum Thani 12120, Thailand
| | - Crispin R. Dass
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Institute for Research Innovation, Curtin University, Perth, WA 6845, Australia
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Lahooti-Fard F, Imani M, Yousefi AA, Babaie M. Formation of liquid-crystalline morphologies in dilute solutions of a charged random terpolymer. POLYM INT 2014. [DOI: 10.1002/pi.4673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Farzad Lahooti-Fard
- Novel Drug Delivery Systems Department; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| | - Ali Akbar Yousefi
- Department of Plastics; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| | - Maryam Babaie
- Novel Drug Delivery Systems Department; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| |
Collapse
|
4
|
Doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts. Cancer Lett 2013; 334:263-73. [DOI: 10.1016/j.canlet.2012.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 02/02/2023]
|