1
|
Bonetti KA, Rende D, Murphy M, Welch JT. Photocurable Hypervalent Fluorinated Sulfur Containing Thin Films with Remarkable Hardness and Modulus. Molecules 2024; 29:4413. [PMID: 39339408 PMCID: PMC11434361 DOI: 10.3390/molecules29184413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Novel tetrafluoro-λ6-sulfanyl-containing oligomers prepared by visible light-promoted addition of 1,4-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene or 1,3-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene to either 1,4-diethynyl benzene or the 1,3-diethynyl isomers form hard, stress resistant thin films on spin casting. The isomeric oligomers were utilized to establish a structure-function relationship for the mechanical properties of films prepared from the oligomers. The Young's moduli of 145-nm-thick cured films could reach 60 GPa. The measured hardnesses, between 1.57 and 2.77 GPa, were more than double those of polymethyl methacrylate (PMMA) films. Curing of the tetrafluoro-λ6-sulfanyl-containing polymer films by UV irradiation resulted in coatings that exhibited remarkable hardness and modulus with good surface adhesion to silicon.
Collapse
Affiliation(s)
- Kelly A. Bonetti
- Department of Chemistry, University at Albany SUNY, Albany, NY 12222, USA;
| | - Deniz Rende
- Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Michael Murphy
- Department of Nanoscale Science & Engineering, University at Albany SUNY, Albany, NY 12222, USA;
| | - John T. Welch
- Department of Chemistry, University at Albany SUNY, Albany, NY 12222, USA;
| |
Collapse
|
2
|
Romani VP, Martins PC, da Rocha M, Bulhosa MCS, Kessler F, Martins VG. UV Radiation and Protein Hydrolysates in Bio-Based Films: Impacts on Properties and Italian Salami Preservation. Antioxidants (Basel) 2024; 13:517. [PMID: 38790622 PMCID: PMC11117594 DOI: 10.3390/antiox13050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
UV radiation was combined with the incorporation of fish protein hydrolysates to improve the performance of active bio-based films for food packaging. UV radiation was not used previously to enhance the packaging performance of blend films of starch/protein, and fish protein hydrolysates were not incorporated in bio-based polymer surfaces previously. Rice starch and fish proteins (from Whitemouth croaker muscle) were utilized to prepare films by the casting technique, which were UV-radiated under different exposure times (1, 5, and 10 min). The packaging performance of the films was determined according to the mechanical and barrier performance, solubility, and color. Fish protein hydrolysates (from Argentine croaker muscle) were then incorporated into the films (bulk structure or surface). The results showed that UV radiation for 1 min increased the tensile strength and modified the optical properties of films. It also altered the structure of the polymeric matrix, as demonstrated by the microstructure and thermal analysis, in agreement with the data obtained in packaging properties. The evaluation of antioxidant capacity through 2,2-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and reducing power indicated that incorporating fish protein hydrolysates either in the films' bulk structure or film surface promoted antioxidant properties; control films (produced with rice starch/fish proteins without hydrolysates) also presented antioxidant potential. According to the peroxide value and thiobarbituric acid reactive substance (TBARS) assays, control films and the films containing hydrolysates in their bulk structure or on the surface could prevent the lipid oxidation of Italian salami. Thus, combining UV radiation to shape the characteristics of bio-based materials with fish protein hydrolysates to reduce lipid oxidation contributes to the performance of active bio-based films for food packaging.
Collapse
Affiliation(s)
- Viviane Patrícia Romani
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
- Federal Institute of Paraná—Pitanga Campus, Pitanga 85200-000, PR, Brazil
| | - Paola Chaves Martins
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
| | - Meritaine da Rocha
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
| | - Maria Carolina Salum Bulhosa
- Laboratory of Applied and Technological Physical Chemistry, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Felipe Kessler
- Laboratory of Applied and Technological Physical Chemistry, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
| |
Collapse
|
3
|
Li Y, Liu Y, Liu S, Zhang L, Shao H, Wang X, Zhang W. Photoaging of Baby Bottle-Derived Polyethersulfone and Polyphenylsulfone Microplastics and the Resulting Bisphenol S Release. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3033-3044. [PMID: 35142490 DOI: 10.1021/acs.est.1c05812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study evaluated the release of bisphenol S (BPS) from polyethersulfone (PES) and polyphenylsulfone microplastics (MPs) derived from baby bottles under UV irradiation. Released BPS fluctuates over time because it undergoes photolysis under UV254 irradiation. Under UV365 irradiation, the highest released concentration at 50 °C was 1.7 and 3.2 times that at 35 and 25 °C, respectively, as the activation energy of the photochemical reactions responsible for MP decay was reduced at high temperatures. Low concentrations of humic acid (HA, ≤10 mg·L-1) promote BPS release because HA acts as a photosensitizer. A high concentration of HA (10∼50 mg·L-1) decreases the BPS release because HA shields MPs from light and scavenges reactive radicals that are produced via photochemical reactions. For example, under UV irradiation, hydroxyl radicals (•OH) attack results in the breakage of ether bonds and the formation of phenyl radicals (Ph•) and phenoxy radicals (Ph-O•).The•OH addition and hydrogen extractions further produce BPS from the decayed MPs. A leaching kinetics model was developed and calibrated by the experimental data. The calibrated model predicts the equilibrium level of BPS release from MPs that varies with the surface coverage density of BPS and leaching rate constants. This study provides groundwork that deepens our understanding of environmental aging and the chemical release of MPs.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Shengdong Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Heng Shao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Carrizo AF, Belmonte GK, Santos FS, Backes CW, B Strapasson G, Schmidt LC, Rodembusch FS, Weibel DE. Highly Water-Stable Polymer-Perovskite Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59252-59262. [PMID: 34851611 DOI: 10.1021/acsami.1c17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excellent performance of hybrid metal-halide perovskite nanocrystals (NCs) contrasts with their unsatisfactory stability in a high-humidity environment or water. Herein, polymer composite lead-halide perovskites (LHPs) NCs were prepared by casting or spin-coating to produce a high fluorescence yield and a fully water-resistant material. Poly(l-lactide) (PLla), polypropylene glycol (PPGly), and polysulfone (PSU) commercial polymers were used to prepare suspensions of MAPbBr3-HDA NCs (MA: CH3NH3; HDA: hexadecylamine). The MAPbBr3-HDA@PLla suspension exhibited a maximum fluorescence quantum yield of 93% compared to 43% for the pristine MAPbBr3-HDA NCs. Strong emissions around 528 nm were also observed, with the same full width at half maximum value of 20 nm, demonstrating the successful fabrication of brightly luminescent LHP NCs@polymer combinations. Time-resolved photoluminescence measurements directly observed the enhanced spontaneous emission of the NCs induced by the polymeric environment. However, the cast films of MAPbBr3-HDA NCs mixed with PLla or PPGly did not resist water immersion. On the contrary, MAPbBr3-HDA@PPGly/PSU films containing well-dispersed ∼10 nm LHP NCs retained a bright green fluorescence emission even after 18 months under air conditions or water immersion up to 45 °C. From water contact angle measurements, profilometry, and X-ray photoelectron spectroscopy data, it could be assumed that the slightly hydrophobic PSU polymer is responsible for the high water stability of the fluorescent films, which avoids MAPbBr3-HDA NC degradation. This work shows that the LHP NC dispersion in dissolved commodity polymers holds great promise toward the long-term stability of LHP NC composites for the future development of wearable electronic devices and other waterproof applications.
Collapse
Affiliation(s)
- Antonella Florencia Carrizo
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, X5000HUA Córdoba, Argentina
| | - Guilherme K Belmonte
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves, 9500, Bairro Agronomia, CP 15003, CEP: 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano S Santos
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves, 9500, Bairro Agronomia, CP 15003, CEP: 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Claudio W Backes
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves, 9500, Bairro Agronomia, CP 15003, CEP: 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme B Strapasson
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves, 9500, Bairro Agronomia, CP 15003, CEP: 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana C Schmidt
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, X5000HUA Córdoba, Argentina
| | - Fabiano S Rodembusch
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves, 9500, Bairro Agronomia, CP 15003, CEP: 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel E Weibel
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves, 9500, Bairro Agronomia, CP 15003, CEP: 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Yang Y, Xu LP, Zhang X, Wang S. Bioinspired wettable-nonwettable micropatterns for emerging applications. J Mater Chem B 2021; 8:8101-8115. [PMID: 32785360 DOI: 10.1039/d0tb01382j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Superhydrophilic and superhydrophobic surfaces are prevalent in nature and have received tremendous attention due to their importance in both fundamental research and practical applications. With the high interdisciplinary research and great development of microfabrication techniques, artificial wettable-nonwettable micropatterns inspired by the water-collection behavior of desert beetles have been successfully fabricated. A combination of the two extreme states of superhydrophilicity and superhydrophobicity on the same surface precisely, wettable-nonwettable micropatterns possess unique functionalities, such as controllable superwetting, anisotropic wetting, oriented adhesion, and other properties. In this review, we briefly describe the methods for fabricating wettable-nonwettable patterns, including self-assembly, electrodeposition, inkjet printing, and photolithography. We also highlight some of the emerging applications such as water collection, controllable bioadhesion, cell arrays, microreactors, printing techniques, and biosensors combined with various detection methods. Finally, the current challenges and prospects of this renascent and rapidly developing field are proposed and discussed.
Collapse
Affiliation(s)
- Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China. and School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Backes CW, Weibel DE. Enhanced glycerol dehydration of pervaporation cross‐linked
PVA
membranes modified by
VUV
/
UV‐C
treatments. J Appl Polym Sci 2021. [DOI: 10.1002/app.50723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Claudio W. Backes
- Chemistry Institute Universidade Federal do Rio Grande do Sul‐UFRGS Porto Alegre Brazil
| | - Daniel E. Weibel
- Chemistry Institute Universidade Federal do Rio Grande do Sul‐UFRGS Porto Alegre Brazil
| |
Collapse
|
7
|
Díez B, Amariei G, Rosal R. Electrospun Composite Membranes for Fouling and Biofouling Control. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Berta Díez
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
8
|
Pogreb R, Danchuk V, Whyman G. Influence of UV irradiation in nitrogen and air environment on dielectric properties of ultrathin polysulfone films revealed using surface plasmon resonance method. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Roman Pogreb
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Victor Danchuk
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Gene Whyman
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
9
|
Pogreb R, Danchuk V, Whyman G. Dielectric properties of UV-irradiated ultrathin polysulfone films revealed by surface plasmon resonance method. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1455398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Roman Pogreb
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Viktor Danchuk
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Gene Whyman
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Lando GA, Marconatto L, Kessler F, Lopes W, Schrank A, Vainstein MH, Weibel DE. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi. Int J Mol Sci 2017; 18:E1536. [PMID: 28718785 PMCID: PMC5536024 DOI: 10.3390/ijms18071536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.
Collapse
Affiliation(s)
- Gabriela Albara Lando
- Laboratory of Photochemistry and Surfaces, Institute of Chemistry, Universidade Federal de Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Letícia Marconatto
- Laboratory of Geobiology, Institute of Petroleum and Natural Resources, Pontifical Catholic University Rio Grande do Sul (IPR-PUCRS), Av. Ipiranga, 6681, CEP 90619-900 Porto Alegre, RS, Brazil.
| | - Felipe Kessler
- Laboratory of Applied and Technological Physical Chemistry, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Av. Itália, Km 08, CEP 96201-900 Rio Grande, RS, Brazil.
| | - William Lopes
- Laboratório de Fungos de Importância Médica e Biotecnológica, Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Augusto Schrank
- Laboratório de Fungos de Importância Médica e Biotecnológica, Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Marilene Henning Vainstein
- Laboratório de Fungos de Importância Médica e Biotecnológica, Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Daniel Eduardo Weibel
- Laboratory of Photochemistry and Surfaces, Institute of Chemistry, Universidade Federal de Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Huang X, Luo C, Lin L, Zhang L, Li H, Yao K, Xu Z. UV-assisted treatment on hydrophobic acrylic IOLs anterior surface with methacryloyloxyethyl phosphorylcholine: Reducing inflammation and maintaining low posterior capsular opacification properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1289-1298. [DOI: 10.1016/j.msec.2017.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/29/2017] [Accepted: 03/03/2017] [Indexed: 01/05/2023]
|
12
|
Shin S, Seo J, Han H, Kang S, Kim H, Lee T. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E116. [PMID: 28787916 PMCID: PMC5456462 DOI: 10.3390/ma9020116] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/04/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.
Collapse
Affiliation(s)
- Sera Shin
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jungmok Seo
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Heetak Han
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Subin Kang
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyunchul Kim
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Taeyoon Lee
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Korea.
| |
Collapse
|
13
|
Wettability and cell spreading enhancement in poly(sulfone) and polyurethane surfaces by UV-assisted treatment for tissue engineering purposes. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-013-1117-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:57-67. [DOI: 10.1016/j.jphotobiol.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 01/13/2023]
|
15
|
Palacios-Cuesta M, Cortajarena AL, García O, Rodríguez-Hernández J. Versatile Functional Microstructured Polystyrene-Based Platforms for Protein Patterning and Recognition. Biomacromolecules 2013; 14:3147-54. [DOI: 10.1021/bm400771y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marta Palacios-Cuesta
- Department of Chemistry and
Properties of Polymers, Instituto de Ciencia y Tecnología de Polímeros, (ICTP-CSIC), Juan de la Cierva
3, 28006 Madrid, Spain
| | - Aitziber L. Cortajarena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain and CNB-CSIC-IMDEA Nanociencia
Associated Unit “Unidad de Nanobiotecnología”
| | - Olga García
- Department of Chemistry and
Properties of Polymers, Instituto de Ciencia y Tecnología de Polímeros, (ICTP-CSIC), Juan de la Cierva
3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Department of Chemistry and
Properties of Polymers, Instituto de Ciencia y Tecnología de Polímeros, (ICTP-CSIC), Juan de la Cierva
3, 28006 Madrid, Spain
| |
Collapse
|