1
|
Li JY, Liu ZQ, Cui YH, Yang SQ, Gu J, Ma J. Abatement of Aromatic Contaminants from Wastewater by a Heat/Persulfate Process Based on a Polymerization Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18575-18585. [PMID: 36642924 DOI: 10.1021/acs.est.2c06137] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel approach to the abatement of pollutants consisting of their conversion to separable solid polymers is explored by a heat/persulfate (PDS) process for the treatment of high-temperature wastewaters. During this process, a simultaneous decontamination and carbon recovery can be achieved with minimal use of PDS, which is significantly different from conventional degradation processes. The feasibility of this process is demonstrated by eight kinds of typical organic pollutants and by a real coking wastewater. For the treatment of the selected pollutants, 30.2-91.9% DOC abatement was achieved with 24.8-91.2% carbon recovery; meanwhile, only 5.2-47.0% of PDS was consumed compared to a conventional degradation process. For the treatment of a real coking wastewater, 71.0% DOC abatement was achieved with 66.0% carbon recovery. With phenol as a representative compound, our polymerization-based heat/PDS process is applicable in a wide pH range (3.5-9.0) with a carbon recovery of >87%. Both SO4•- and HO• can be initiators for polymerization, with different contribution ratios under various conditions. Phenol monomers are semioxidized to form phenolic radicals, which are polymerized via chain transfer or chain growth processes to form separable solid phenol polymers, benzenediol polymers, and cross-linked polymers.
Collapse
Affiliation(s)
- Jia-Ying Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, Jiangsu, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
2
|
Core-Shell Structured Phenolic Polymer@TiO 2 Nanosphere with Enhanced Visible-Light Photocatalytic Efficiency. NANOMATERIALS 2020; 10:nano10030467. [PMID: 32150857 PMCID: PMC7153608 DOI: 10.3390/nano10030467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022]
Abstract
Core–shell structured TiO2 is a promising solution to promote the photocatalytic effectiveness in visible light. Compared to metal or semiconductor materials, polymers are rarely used as the core materials for fabricating core–shell TiO2 materials. A novel core–shell structured polymer@TiO2 was developed by using phenolic polymer (PP) colloid nanoparticles as the core material. The PP nanoparticles were synthesized by an enzyme-catalyzed polymerization in water. A subsequent sol–gel and hydrothermal reaction was utilized to cover the TiO2 shell on the surfaces of PP particles. The thickness of the TiO2 shell was controlled by the amount of TiO2 precursor. The covalent connection between PP and TiO2 was established after the hydrothermal reaction. The core–shell structure allowed the absorption spectra of PP@TiO2 to extend to the visible-light region. Under visible-light irradiation, the core–shell nanosphere displayed enhanced photocatalytic efficiency for rhodamine B degradation and good recycle stability. The interfacial C–O–Ti bonds and the π-conjugated structures in the PP@TiO2 nanosphere played a key role in the quick transfer of the excited electrons between PP and TiO2, which greatly improved the photocatalytic efficiency in visible light.
Collapse
|
3
|
Yüksel E, Bilici A, Geçibesler İH, Kaya İ. Synthesis and antioxidant activities of phenolic Schiff base monomers and polymers. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, synthesis, characterization, and antioxidant activities of two Schiff base monomers (1 and 2) and their corresponding oxidation products (3 and 4) were reported. The monomers were prepared by condensation of 8-amino-2-naphthol with 2,4-dihydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde, and then, they were oxidized to in alkaline medium by NaOCl to obtain the corresponding oxidation products. The compounds 1–4 were characterized by various spectral techniques. The analysis results indicated that the oxidation products had a chain structure consisting of randomly ordered phenylene and oxyphenylene units. In vitro antioxidant activities of 1–4 were evaluated against a ABTS cation radical and a DPPH free radical and compared with standard natural antioxidants, vitamin C (ascorbic acid), and vitamin E (α-tocopherol). The ferric reducing antioxidant power and ferrous-ion chelating activities of 1–4 were also determined.
Collapse
Affiliation(s)
- Esranur Yüksel
- Ministry of National Education, Kapaklı Municipal Secondary School, Tekirdağ, Turkey
| | - Ali Bilici
- Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Çanakkale, Turkey
| | - İbrahim Halil Geçibesler
- Bingol University, Faculty of Health Sciences, Department of Occupational Health and Safety Laboratory of Natural Product Research, Bingol 12000, Turkey
| | - İsmet Kaya
- Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Çanakkale, Turkey
| |
Collapse
|
4
|
Yao CL, Lin CC, Chu IM, Lai YT. Development of a Surfactant-Containing Process to Improve the Removal Efficiency of Phenol and Control the Molecular Weight of Synthetic Phenolic Polymers Using Horseradish Peroxidase in an Aqueous System. Appl Biochem Biotechnol 2020; 191:45-58. [PMID: 31940119 DOI: 10.1007/s12010-020-03245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
To reduce phenolic pollutants in the environment, many countries have imposed firm restrictions on industrial wastewater discharge. In addition, the current industrial process of phenolic resin production uses phenol and formaldehyde as the reactants to perform a polycondensation reaction. Due to the toxicity of formaldehyde and phenolic pollutants, the main purpose of this research was to design a green process using horseradish peroxidase (HRP) enzymatic polymerization to remove phenols and to produce formaldehyde-free phenolic polymers. In this study, the optimal reaction conditions, such as reaction temperature, pH, initial phenol concentration and initial ratio of phenol, and H2O2, were examined. Then, the parameters of the enzyme kinetics were determined. To solve the restriction of enzyme inactivation, several nonionic surfactants were selected to improve the phenol removal efficiency, and the optimal operation conditions in a surfactant-containing system were also confirmed. Importantly, the molecular weight of the synthetic phenolic polymers could be controlled by adjusting the ratio of phenol and H2O2. The content of biphenols in the products was almost undetectable. Collectively, a green chemistry process was proposed in this study and would benefit the treatment of phenol-containing wastewater and the production of formaldehyde-free phenolic resin in the future.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Che-Chi Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Ting Lai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| |
Collapse
|
5
|
Kiratitanavit W, Bruno FF, Kumar J, Nagarajan R. Facile enzymatic preparation of fluorescent conjugated polymers of phenols and their application in sensing. J Appl Polym Sci 2018. [DOI: 10.1002/app.46496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Ferdinando F. Bruno
- US Army Natick Soldier Research Development and Engineering Center, RDECOM; Natick Massachusetts 01760
| | - Jayant Kumar
- Center for Advanced Materials and HEROES Initiative, University of Massachusetts; Lowell Massachusetts 01854
- Department of Physics; University of Massachusetts; Lowell Massachusetts 01854
| | - Ramaswamy Nagarajan
- Department of Plastics Engineering; University of Massachusetts; Lowell Massachusetts 01854
- Center for Advanced Materials and HEROES Initiative, University of Massachusetts; Lowell Massachusetts 01854
| |
Collapse
|
6
|
Singhal A, Ahmad S, Chauhan SM. Iron(III) porphyrin catalyzed ionic liquid mediated polymerization of methylmethacrylate. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anchal Singhal
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Sohail Ahmad
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | | |
Collapse
|
7
|
Topal Y, Tapan S, Gokturk E, Sahmetlioglu E. Horseradish peroxidase-catalyzed polymerization of ortho-imino-phenol: Synthesis, characterization, thermal stability and electrochemical properties. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Synthesis, characterization, thermal stability and electrochemical properties of ortho-imine-functionalized oligophenol via enzymatic oxidative polycondensation. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-0953-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
10
|
Enzymatic synthesis of polyguaiacol and its thermal antioxidant behavior in polypropylene. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1551-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Zheng K, Tang H, Chen Q, Zhang L, Wu Y, Cui Y. Enzymatic synthesis of a polymeric antioxidant for efficient stabilization of polypropylene. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2014.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Duan H, Zheng K, Cui YC, Li YD, Zhang L. Effect of tetrabutylammonium bromide on enzymatic polymerization of phenol catalyzed by horseradish peroxidase. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1473-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|