1
|
Janata M, Čadová E, Johnson JW, Raus V. Diminishing the catalyst concentration in the Cu(0)‐
RDRP
and
ATRP
synthesis of well‐defined low‐molecular weight poly(glycidyl methacrylate). JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Jeffery W. Johnson
- Axalta Coating Systems Global Innovation Center Philadelphia PA 19112 USA
| | - Vladimír Raus
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| |
Collapse
|
2
|
Sun J, Hong YL, Wang C, Tan ZW, Liu CM. Main-chain/Side-chain type Phosphine Oxide-Containing Reactive Polymers Derived from same Monomer: Controllable RAFT Polymerisation and ring-opening Polycondensation. Polym Chem 2022. [DOI: 10.1039/d2py00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the synthesis and selective polymerisations of an epoxy-rich phosphine oxide-containing styrenic monomer, namely 4-vinylbenzyl-bis((oxiran-2-ylmethoxy)methyl) phosphine oxide (VBzBOPO). The styryl and epoxy functionalities could be polymerized independently through...
Collapse
|
3
|
McGuire TM, Miyajima M, Uchiyama M, Buchard A, Kamigaito M. Epoxy-functionalised 4-vinylguaiacol for the synthesis of bio-based, degradable star polymers via a RAFT/ROCOP strategy. Polym Chem 2020. [DOI: 10.1039/d0py00878h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An epoxy derivative of a naturally occuring vinylphenolic compound, 4-vinylguaiacol, was polymerised using a RAFT/ROCOP strategy and produced ester cross-linked star polymers which could be selectively degraded under acid conditions.
Collapse
Affiliation(s)
- Thomas M. McGuire
- Centre for Sustainable and Circular Technologies
- Department of Chemistry
- University of Bath
- Claverton Down BA2 7AY
- UK
| | - Masato Miyajima
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Antoine Buchard
- Centre for Sustainable and Circular Technologies
- Department of Chemistry
- University of Bath
- Claverton Down BA2 7AY
- UK
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
4
|
Medini H, Mekni NH, Baklouti A. Synthesis of a new bis(perfluoroalkyl oxirane) dioxyethylene ether. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2014.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hayet Medini
- Chemistry Department, Faculty of Science & Arts, Al Ula Branch, Taibah UniversitySaudi Arabia
| | - Nejib Hussein Mekni
- Chemistry Department, Faculty of Science & Arts, Al Ula Branch, Taibah UniversitySaudi Arabia
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Science of Tunis, University of TunisEl Manar Tunis2092Tunisia
| | - Ahmed Baklouti
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Science of Tunis, University of TunisEl Manar Tunis2092Tunisia
| |
Collapse
|
5
|
Taskin OS, Kiskan B, Yagci Y. An efficient, heterogeneous, reusable atom transfer radical polymerization catalyst. POLYM INT 2017. [DOI: 10.1002/pi.5485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Omer Suat Taskin
- Istanbul Technical University; Department of Chemistry; Istanbul Turkey
- Istanbul University, Institute of Marine Science and Management; Chemical Oceanography; Istanbul Turkey
| | - Baris Kiskan
- Istanbul University, Institute of Marine Science and Management; Chemical Oceanography; Istanbul Turkey
| | - Yusuf Yagci
- Istanbul University, Institute of Marine Science and Management; Chemical Oceanography; Istanbul Turkey
| |
Collapse
|
6
|
McLeod DC, Tsarevsky NV. Reversible Deactivation Radical Polymerization of Monomers Containing Activated Aziridine Groups. Macromol Rapid Commun 2016; 37:1694-1700. [DOI: 10.1002/marc.201600354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/18/2016] [Indexed: 01/20/2023]
Affiliation(s)
- David C. McLeod
- Department of Chemistry and Center for Drug Discovery; Design, and Delivery at Dedman College; Southern Methodist University; 3215 Daniel Avenue Dallas TX 75275 USA
| | - Nicolay V. Tsarevsky
- Department of Chemistry and Center for Drug Discovery; Design, and Delivery at Dedman College; Southern Methodist University; 3215 Daniel Avenue Dallas TX 75275 USA
| |
Collapse
|
7
|
McLeod DC, Tsarevsky NV. 4-Vinylphenyl Glycidyl Ether: Synthesis, RAFT Polymerization, and Postpolymerization Modifications with Alcohols. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David C. McLeod
- Department of Chemistry and
Center for Drug Discovery, Design, and Delivery at Dedman College, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275, United States
| | - Nicolay V. Tsarevsky
- Department of Chemistry and
Center for Drug Discovery, Design, and Delivery at Dedman College, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275, United States
| |
Collapse
|
8
|
Yang Q, Balverde S, Dumur F, Lalevée J, Poly J. Synergetic effect of the epoxide functional groups in the photocatalyzed atom transfer radical copolymerization of glycidyl methacrylate. Polym Chem 2016. [DOI: 10.1039/c6py01443g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methyl methacrylate (MMA) and glycidyl methacrylate (GMA) were copolymerized by photocatalyzed atom transfer radical polymerization under visible light irradiation. The polymerization was made faster by the epoxide group, which played the role of a reducing agent and thus favored the regeneration of the activator.
Collapse
Affiliation(s)
- Qizhi Yang
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| | - Sophie Balverde
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| | - Frédéric Dumur
- Aix-Marseille Université
- CNRS
- ICR UMR7273
- 13397 Marseille
- France
| | - Jacques Lalevée
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| | - Julien Poly
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| |
Collapse
|
9
|
McLeod DC, Tsarevsky NV. Well-defined epoxide-containing styrenic polymers and their functionalization with alcohols. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David C. McLeod
- Department of Chemistry and Center for Drug Discovery, Design, and Delivery at Dedman College; Southern Methodist University; 3215 Daniel Avenue Dallas Texas 75275
| | - Nicolay V. Tsarevsky
- Department of Chemistry and Center for Drug Discovery, Design, and Delivery at Dedman College; Southern Methodist University; 3215 Daniel Avenue Dallas Texas 75275
| |
Collapse
|
10
|
Ding M, Jiang X, Zhang L, Cheng Z, Zhu X. Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP. Macromol Rapid Commun 2015; 36:1702-21. [PMID: 26079178 DOI: 10.1002/marc.201500085] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Atom transfer radical polymerization (ATRP) is a versatile and robust tool to synthesize a wide spectrum of monomers with various designable structures. However, it usually needs large amounts of transition metal as the catalyst to mediate the equilibrium between the dormant and propagating species. Unfortunately, the catalyst residue may contaminate or color the resultant polymers, which limits its application, especially in biomedical and electronic materials. How to efficiently and economically remove or reduce the catalyst residue from its products is a challenging and encouraging task. Herein, recent advances in catalyst separation and recycling are highlighted with a focus on (1) highly active ppm level transition metal or metal free catalyzed ATRP; (2) post-purification method; (3) various soluble, insoluble, immobilized/soluble, and reversible supported catalyst systems; and (4) liquid-liquid biphasic catalyzed systems, especially thermo-regulated catalysis systems.
Collapse
Affiliation(s)
- Mingqiang Ding
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowu Jiang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
Tris(2-pyridylmethyl)amine Based Ligands in Copper Catalyzed Atom Transfer Radical Addition (ATRA) and Polymerization (ATRP). ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1187.ch006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
|