1
|
Lin ZI, Tsai TH, Yu KC, Nien YH, Liu RP, Liu GL, Chi PL, Fang YP, Ko BT, Law WC, Zhou C, Yong KT, Cheng PW, Chen CK. Creation of Chitosan-Based Nanocapsule-in-Nanofiber Structures for Hydrophobic/Hydrophilic Drug Co-Delivery and Their Dressing Applications in Diabetic Wounds. Macromol Biosci 2023; 23:e2300145. [PMID: 37279400 DOI: 10.1002/mabi.202300145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Nanofiber meshes (NFMs) loaded with therapeutic agents are very often employed to treat hard-to-heal wounds such as diabetic wounds. However, most of the NFMs have limited capability to load multiple or hydrophilicity distinctive-therapeutic agents. The therapy strategy is therefore significantly hampered. To tackle the innate drawback associated with the drug loading versatility, a chitosan-based nanocapsule-in-nanofiber (NC-in-NF) structural NFM system is developed for simultaneous loading of hydrophobic and hydrophilic drugs. Oleic acid-modified chitosan is first converted into NCs by the developed mini-emulsion interfacial cross-linking procedure, followed by loading a hydrophobic anti-inflammatory agent Curcumin (Cur) into the NCs. Sequentially, the Cur-loaded NCs are successfully introduced into reductant-responsive maleoyl functional chitosan/polyvinyl alcohol NFMs containing a hydrophilic antibiotic Tetracycline hydrochloride. Having a co-loading capability for hydrophilicity distinctive agents, biocompatibility, and a controlled release property, the resulting NFMs have demonstrated the efficacy on promoting wound healing either in normal or diabetic rats.
Collapse
Affiliation(s)
- Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Kuan-Chi Yu
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Hsun Nien
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Ru-Ping Liu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Yi-Ping Fang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Regenerative Medical and Cell Therapy Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
2
|
Idlas P, Lepeltier E, Bastiat G, Pigeon P, McGlinchey MJ, Lautram N, Vessières A, Jaouen G, Passirani C. Physicochemical Characterization of Ferrocifen Lipid Nanocapsules: Customized Drug Delivery Systems Guided by the Molecular Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1885-1896. [PMID: 36693216 DOI: 10.1021/acs.langmuir.2c02910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ferrocifens, lipophilic organometallic complexes, comprise a biologically active redox motif [ferrocenyl-ene-p-phenol] which confers very interesting cytotoxic properties to this family. However, because of their highly lipophilic nature, a formulation stage is required before being administered in vivo. In recent decades, ferrocifen lipid nanocapsules (LNCs) have been successfully formulated and have demonstrated anticancer activity on multidrug-resistant cancers in several mice and rat models (glioblastoma, breast cancer, and metastatic melanoma). A recent family of ferrocifens (succinimidoalkyl-ferrociphenols, including P722) appears to be most efficacious on several resistant cancer cell lines, with IC50 values in the nanomolar range together with promising in vivo results on murine ovarian cancer models. As LNCs are composed of an oily core (caprylic/capric triglycerides), modulation of the succinimido-ferrociphenol lipophilicity could be a valuable approach toward improving the drug loading in LNCs. As the drug loading of the diphenol P722 in LNCs was low, it was structurally modified to increase its lipophilicity and thereby the payload in LNCs. Chemical modification led to a series of five succinimido-ferrocifens. Results confirmed that these slight structural modifications led to increased drug loading in LNCs for all ferrocifens, with no reduction of their cytotoxicity on the SKOV3 ovarian cancer cell line. Interestingly, encapsulation of two of the ferrocifens, diester P769 and monophenolic ester (E)-P998, led to the formation of a gel. This was unprecedented behavior, a phenomenon that could be rationalized in terms of the positioning of ferrocifens in LNCs as shown by the decrease of interfacial tension measurements at the water/oil interface. Moreover, these results highlighted the importance of obtaining a gel of this particular motif, in which the acetylated phenolic ring and the succinimidoalkyl moieties are mutually cis relative to the central double bond. Promising perspectives to use these ferrocifen-loaded LNCs to treat glioblastoma could be readily envisaged by local application of the gel in the cavity after tumor resection.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Guillaume Bastiat
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Pascal Pigeon
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris75005, France
- Chimie Paris Tech, PSL University, Paris75005, France
| | | | - Nolwenn Lautram
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Anne Vessières
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris75005, France
| | - Gerard Jaouen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris75005, France
- Chimie Paris Tech, PSL University, Paris75005, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| |
Collapse
|
3
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
4
|
Metanawin S, Metanawin T. Fabrication of hybrid polystyrene–titanium dioxide with enhanced dye degradation and antimicrobial properties: investigation of the effect of triethylene glycol dimethacrylate on photocatalytic activity. POLYM INT 2021. [DOI: 10.1002/pi.6346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siripan Metanawin
- Department of Textile Engineering, Faculty of Engineering Rajamangala University of Technology Thanyaburi Thanyaburi Thailand
| | - Tanapak Metanawin
- Department of Materials and Production Technology Engineering, Faculty of Engineering King Mongkut's University of Technology North Bangkok Bangkok Thailand
| |
Collapse
|
5
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
6
|
Photo- and pH-responsive drug delivery nanocomposite based on o-nitrobenzyl functionalized upconversion nanoparticles. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Zhao Y, Li Q, Chai J, Liu Y. Cargo‐Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jingshan Chai
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Sun H, Erdman W, Yuan Y, Mohamed MA, Xie R, Wang Y, Gong S, Cheng C. Crosslinked polymer nanocapsules for therapeutic, diagnostic, and theranostic applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1653. [PMID: 32618433 DOI: 10.1002/wnan.1653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Crosslinked polymer nanocapsules (CPNCs) are hollowed nanoparticles with network-like polymeric shells stabilized by primary bonds. CPNCs have drawn broad and significant interests as nanocarriers for biomedical applications in recent years. As compared with conventional polymeric nanoparticles systems without cavity and/or crosslinking architectures, CPNCs possess significant biomedical relevant advantages, including (a) superior structural stability against environmental conditions, (b) high loading capacity and ability for region-specific loading of multiple cargos, (c) tuneable cargo release rate via crosslinking density, and (d) high specific surface area to facilitate surface adsorption, modification, and interactions. With appropriate base polymers and crosslinkages, CPNCs can be biocompatible and biodegradable. While CPNC-based biomedical nanoplatforms can possess relatively stable physicochemical properties owing to their crosslinked architectures, various biomedically relevant stimuli-responsivities can be incorporated with them through specific structural designs. CPNCs have been studied for the delivery of small molecule drugs, genes, proteins, and other therapeutic agents. They have also been investigated as diagnostic platforms for magnetic resonance imaging, ultrasound imaging, and optical imaging. Moreover, CPNCs have been utilized to carry both therapeutics and bioimaging agents for theranostic applications. This article reviews the therapeutic, diagnostic and theranostic applications of CPNCs, as well as the preparation of these CPNCs, reported in the past decade. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - William Erdman
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Yuan Yuan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Department of Chemistry, Mansoura University, Mansoura, Egypt
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuyuan Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
9
|
Li M, Li Q, Hou W, Zhang J, Ye H, Li H, Zeng D, Bai J. A redox-sensitive core-crosslinked nanosystem combined with ultrasound for enhanced deep penetration of nanodiamonds into tumors. RSC Adv 2020; 10:15252-15263. [PMID: 35495450 PMCID: PMC9052314 DOI: 10.1039/d0ra01776k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/07/2023] Open
Abstract
Nanodiamonds (NDs) as drug delivery vehicles are of great significance in anticancer therapy through enhancing drug retention. However, the major barrier to clinical application of NDs is insufficient tumor penetration owing to their strong aggregation and low passive penetration efficiency. Herein, the core-crosslinked pullulan carrier, assembled using the visible light-induced diselenide (Se-Se) bond crosslinking method for encapsulating nanodiamonds-doxorubicin (NDX), is proposed to improve monodispersity. Furthermore, the core-crosslinked diselenide bond provides the nanosystem with redox-responsive capability and improved structural stability in a physiological environment, which prevents premature drug leakage and achieves tumor site-specific controlled release. What's more, ultrasound (US) is utilized to promote nanosystem intratumoral penetration via enlarged tumor vascular endothelium cell gaps. As expected, the nanosystem combined with ultrasound can enhance anti-tumor efficacy with deep penetration and excellent retention performance in a HepG2 xenograft mouse model. This study highlights the ability of the integrated therapeutic paradigm to overcome the limitation of nanodiamonds and the potential for further application in cancer therapy.
Collapse
Affiliation(s)
- Meixuan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Qianyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Wei Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Jingni Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Hemin Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Deping Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
10
|
Dergunov SA, Richter AG, Kim MD, Pingali SV, Urban VS, Pinkhassik E. Deciphering and Controlling Structural and Functional Parameters of the Shells in Vesicle-Templated Polymer Nanocapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13020-13030. [PMID: 31403799 DOI: 10.1021/acs.langmuir.9b01495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vesicle-templated nanocapsules are prepared by polymerization of hydrophobic acrylic monomers and cross-linkers in the hydrophobic interior of self-assembled bilayers. Understanding the mechanism of capsule formation and the influence of synthetic parameters on the structural features and functional performance of nanocapsules is critical for the rational design of functional nanodevices, an emerging trend of application of the nanocapsule platform. This study investigated the relationship between basic parameters of the formulation and synthesis of nanocapsules and structural and functional characteristics of the resulting structures. Variations in the monomer/surfactant ratio, temperature of polymerization, and the molar fraction of the free-radical initiators were investigated with a multipronged approach, including shell thickness measurements using small-angle neutron scattering, evaluation of the structural integrity of nanocapsules with scanning electron microscopy, and determination of the retention of entrapped molecules using absorbance and fluorescence spectroscopy. Surprisingly, the thickness of the shells did not correlate with the monomer/surfactant ratio, supporting the hypothesis of substantial stabilization of the surfactant bilayer with loaded monomers. Decreasing the temperature of polymerization had no effect on the spherical structure of nanocapsules but resulted in progressively lower retention of entrapped molecules, suggesting that a spherical skeleton of nanocapsule forms rapidly, followed by filling the gaps to create the structure without pinholes. Lower content of initiators resulted in slower reactions, outlining the baseline conditions for practical synthetic protocols. Taken together, these findings provide insights into the formation of nanocapsules and offer methods for controlling the properties of nanocapsules in viable synthetic methods.
Collapse
Affiliation(s)
- Sergey A Dergunov
- Department of Chemistry , University of Connecticut , 55 North Eagleville Rd. , Storrs , Connecticut 06269-3060 , United States
| | - Andrew George Richter
- Department of Physics and Astronomy , Valparaiso University , Valparaiso , Indiana 46383 , United States
| | - Mariya D Kim
- Department of Chemistry , University of Connecticut , 55 North Eagleville Rd. , Storrs , Connecticut 06269-3060 , United States
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology , Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge , Tennessee 37831-6430 , United States
| | - Volker S Urban
- Center for Structural Molecular Biology , Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge , Tennessee 37831-6430 , United States
| | - Eugene Pinkhassik
- Department of Chemistry , University of Connecticut , 55 North Eagleville Rd. , Storrs , Connecticut 06269-3060 , United States
| |
Collapse
|
11
|
Ma X, Liu J, Lei L, Yang H, Lei Z. Synthesis of light and dual‐redox triple‐stimuli‐responsive core‐crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2019. [DOI: 10.1002/app.47946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Ma
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Jiangtao Liu
- College of PharmacyShaanxi University of Chinese Medicine Xianyang 712046 China
| | - Lei Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Hong Yang
- Basic Experimental Teaching CenterShaanxi Normal University Xi'an 710062 China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid ChemistrySchool of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
12
|
Sun H, Yan L, Carter KA, Zhang J, Caserto J, Lovell JF, Wu Y, Cheng C. Zwitterionic Cross-Linked Biodegradable Nanocapsules for Cancer Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1440-1449. [PMID: 30086625 PMCID: PMC9645400 DOI: 10.1021/acs.langmuir.8b01633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Zwitterionic cross-linked biodegradable nanocapsules (NCs) were synthesized for cancer imaging. A polylactide (PLA)-based diblock copolymer with two blocks carrying acetylenyl and allyl groups respectively was synthesized by ring-opening polymerization (ROP). Azide-alkyne "click" reaction was conducted to conjugate sulfobetaine (SB) zwitterions and fluorescent dye Cy5.5 onto the acetylenyl-functionalized first block of the diblock copolymer. The resulting copolymer with a hydrophilic SB/Cy5.5-functionalized PLA block and a hydrophobic allyl-functionalized PLA block could stabilize miniemulsions because of its amphiphilic diblock structure. UV-induced thiol-ene "click" reaction between a dithiol cross-linker and the hydrophobic allyl-functionalized block of the copolymer at the peripheral region of nanoscopic oil nanodroplets in the miniemulsion generated cross-linked polymer NCs with zwitterionic outer shells. These NCs showed an average hydrodynamic diameter ( Dh) of 136 nm. They exhibited biodegradability, biocompatibility and high colloidal stability. In vitro study indicated that these NCs could be taken up by MIA PaCa-2 cancer cells. In vivo imaging study showed that, comparing to a small molecule dye, NCs had a longer circulation time, facilitating their accumulation at tumors for cancer imaging. Overall, this work demonstrates the applicability of zwitterionic biodegradable polymer-based materials in cancer diagnosis.
Collapse
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Jiaqi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Julia Caserto
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA
| |
Collapse
|
13
|
Jafari A, Sun H, Sun B, Mohamed MA, Cui H, Cheng C. Layer-by-layer preparation of polyelectrolyte multilayer nanocapsules via crystallized miniemulsions. Chem Commun (Camb) 2019; 55:1267-1270. [PMID: 30632551 DOI: 10.1039/c8cc08043g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Well-defined polyelectrolyte multilayer nanocapsules (NCs) are synthesized by layer-by-layer deposition of poly(acrylic acid) and poly(allylamine hydrochloride) over crystallized miniemulsion nanoparticles, followed by shell crosslinking and template removal. This synthetic approach allows well-controlled dimensions of NCs due to the high colloidal stability of the templates, and may also permit a broad composition range of NCs because of the mild conditions for template removal.
Collapse
Affiliation(s)
- Amin Jafari
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Yang Y, Zhu H, Wang J, Fang Q, Peng Z. Enzymatically Disulfide-Crosslinked Chitosan/Hyaluronic Acid Layer-by-Layer Self-Assembled Microcapsules for Redox-Responsive Controlled Release of Protein. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33493-33506. [PMID: 30203959 DOI: 10.1021/acsami.8b07120] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Disulfide-crosslinked hollow polyelectrolyte microcapsules composed of thiolated chitosan (CS-SH) and hyaluronic acid (HA-SH) were prepared by combining the layer-by-layer (LBL) technique and horseradish peroxidase (HRP)-mediated oxidative cross-linking reaction in mild conditions. FITC-dextran-doped CaCO3 microspheres were used as template core and removed after LBL depositing CS-SH and HA-SH on the surface. The disulfide-crosslinked (CS/HA) microcapsules were readily fabricated by HRP-mediated oxidative coupling of the thiol groups in CS/HA shell layer in the presence of HRP (10 units/mL) and Tyramine hydrochloride (Tyr, 35 mmol/L). The kinetics of enzymatic disulfide-crosslinking reaction was investigated through the real-time monitoring of the consumption of thiol groups by UV absorption spectra. It found that the formation of disulfide linkages by the enzymatic thiol oxidation reaction showed a gradual acceleration. The disulfide-crosslinked CS/HA hydrogel were rapidly formed in gelation time between approximately 17 and 30 min, which were dependent on the concentrations of HRP and Tyr. The disulfide linkages endowed the microcapsule-enhanced physical stability and low permeability under physiological conditions and redox-responsive degradability in reducing environments. The structural stability of disulfide-crosslinked (CS/HA) microcapsules was visualized by confocal laser scanning microscopy in phosphate-buffered saline containing 5.0 mmol/L dithiothreitol (DTT) to evaluate the redox-responsive disassembly process. Redox-responsive controlled release of encapsulated FITC-dextran from the disulfide-crosslinked (CS/HA) microcapsules were obtained. The release profiles of FITC-dextran could be manipulated by controlling the shell thickness and the concentration of DTT. The conformational stability analyses and more than 94% esterase activity of released bovine serum albumin (BSA) from (CS/HA) microcapsules conformed that the structural integrity and bioactivity were well preserved during the encapsulation and release process. The microcapsules exhibited excellent cytocompatibility for HEK 293 cells up to a concentration of 1.0 mg/mL. The microcapsules efficiently delivered loaded FITC-BSA into HeLa cells and released the protein in the reducing cytosol. This study proposed a novel approach for producing disulfide-crosslinked microcarriers for intracellular delivery and redox-responsive controlled release of protein.
Collapse
Affiliation(s)
- Yue Yang
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Hekang Zhu
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Ji Wang
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Qian Fang
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| | - Zhiping Peng
- School of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China
| |
Collapse
|
15
|
Pothanagandhi N, Vijayakrishna K. RAFT derived chiral and achiral poly(ionic liquids) resins: Synthesis and application in organocatalysis. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Richter AG, Dergunov SA, Kim MD, Shmakov SN, Pingali SV, Urban VS, Liu Y, Pinkhassik E. Unraveling the Single-Nanometer Thickness of Shells of Vesicle-Templated Polymer Nanocapsules. J Phys Chem Lett 2017; 8:3630-3636. [PMID: 28715200 DOI: 10.1021/acs.jpclett.7b01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vesicle-templated nanocapsules have emerged as a viable platform for diverse applications. Shell thickness is a critical structural parameter of nanocapsules, where the shell plays a crucial role providing mechanical stability and control of permeability. Here we used small-angle neutron scattering (SANS) to determine the thickness of freestanding and surfactant-stabilized nanocapsules. Despite being at the edge of detectability, we were able to show the polymer shell thickness to be typically 1.0 ± 0.1 nm, which places vesicle-templated nanocapsules among the thinnest materials ever created. The extreme thinness of the shells has implications for several areas: mass-transport through nanopores is relatively unimpeded; pore-forming molecules are not limited to those spanning the entire bilayer; the internal volume of the capsules is maximized; and insight has been gained on how polymerization occurs in the confined geometry of a bilayer scaffold, being predominantly located at the phase-separated layer of monomers and cross-linkers between the surfactant leaflets.
Collapse
Affiliation(s)
- Andrew G Richter
- Department of Physics and Astronomy, Valparaiso University , Valparaiso, Indiana 46383, United States
| | - Sergey A Dergunov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Mariya D Kim
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Sergey N Shmakov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology, Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge, Tennessee 37831-6430, United States
| | - Volker S Urban
- Center for Structural Molecular Biology, Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge, Tennessee 37831-6430, United States
| | - Yun Liu
- Department of Chemical and Biological Engineering, University of Delaware , Newark, Delaware 19716, United States
- Center for Neutron Science, National Institute of Standards and Technology , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
17
|
Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers. Top Curr Chem (Cham) 2017; 375:24. [DOI: 10.1007/s41061-017-0113-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
|