1
|
Nowogrodski C, Damatov Y, Sapru S, Shoseyov O. In Situ Synthesis of Keratin and Melanin Chromophoric Submicron Particles. ACS OMEGA 2023; 8:26762-26774. [PMID: 37546605 PMCID: PMC10398706 DOI: 10.1021/acsomega.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023]
Abstract
In humans, melanin plays an esthetic role, dictating hair and skin color and traits, while keratin is the protein that comprises most of the epidermis layer. Eumelanin and pheomelanin are types of melanin synthesized from the same building blocks via enzymatic oxidation. Pheomelanin has an additional building block, cysteine amino acid, which affects its final structure. Keratin contains high cysteine content, and by exploiting free thiols in hydrolyzed keratin, we demonstrate the formation of keratin-melanin (KerMel) chromophoric submicron particles. Cryo-TEM analyses found KerMel particle sizes to be 100-300 nm and arranged in the form of a central keratin particle with polymerized l-dopa chains. Attenuated total reflection (ATR)-FTIR, UV-vis, and fluorescence measurements identified new chemical bonds, indicating the formation of KerMel particles. Finally, KerMel replicated natural skin tones and proved cytocompatibility for human epidermal keratinocytes at concentrations below 0.1 mg/mL. Taken together, KerMel is a novel, tunable material that has the potential to integrate into the cosmetic industry.
Collapse
|
2
|
Alcalá-Alcalá S, Casarrubias-Anacleto JE, Mondragón-Guillén M, Tavira-Montalvan CA, Bonilla-Hernández M, Gómez-Galicia DL, Gosset G, Meneses-Acosta A. Melanin Nanoparticles Obtained from Preformed Recombinant Melanin by Bottom- Up and Top- Down Approaches. Polymers (Basel) 2023; 15:polym15102381. [PMID: 37242955 DOI: 10.3390/polym15102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Melanin is an insoluble, amorphous polymer that forms planar sheets that aggregate naturally to create colloidal particles with several biological functions. Based on this, here, a preformed recombinant melanin (PRM) was utilized as the polymeric raw material to generate recombinant melanin nanoparticles (RMNPs). These nanoparticles were prepared using bottom-up (nanocrystallization-NC, and double emulsion-solvent evaporation-DE) and top-down (high-pressure homogenization-HP) manufacturing approaches. The particle size, Z-potential, identity, stability, morphology, and solid-state properties were evaluated. RMNP biocompatibility was determined in human embryogenic kidney (HEK293) and human epidermal keratinocyte (HEKn) cell lines. RMNPs prepared by NC reached a particle size of 245.9 ± 31.5 nm and a Z-potential of -20.2 ± 1.56 mV; 253.1 ± 30.6 nm and -39.2 ± 0.56 mV compared to that obtained by DE, as well as RMNPs of 302.2 ± 69.9 nm and -38.6 ± 2.25 mV using HP. Spherical and solid nanostructures in the bottom-up approaches were observed; however, they were an irregular shape with a wide size distribution when the HP method was applied. Infrared (IR) spectra showed no changes in the chemical structure of the melanin after the manufacturing process but did exhibit an amorphous crystal rearrangement according to calorimetric and PXRD analysis. All RMNPs presented long stability in an aqueous suspension and resistance to being sterilized by wet steam and ultraviolet (UV) radiation. Finally, cytotoxicity assays showed that RMNPs are safe up to 100 μg/mL. These findings open new possibilities for obtaining melanin nanoparticles with potential applications in drug delivery, tissue engineering, diagnosis, and sun protection, among others.
Collapse
Affiliation(s)
- Sergio Alcalá-Alcalá
- Laboratorio de Investigación en Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - José Eduardo Casarrubias-Anacleto
- Laboratorio de Investigación en Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Maximiliano Mondragón-Guillén
- Laboratorio de Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Carlos Alberto Tavira-Montalvan
- Laboratorio de Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Marcos Bonilla-Hernández
- Laboratorio de Investigación en Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Diana Lizbeth Gómez-Galicia
- Farmacia Hospitalaria, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Morelos, Mexico
| | - Angélica Meneses-Acosta
- Laboratorio de Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
3
|
Galeb HA, Lamantia A, Robson A, König K, Eichhorn J, Baldock SJ, Ashton MD, Baum JV, Mort RL, Robinson BJ, Schacher FH, Chechik V, Taylor AM, Hardy JG. The Polymerization of Homogentisic Acid in Vitro as a Model for Pyomelanin Formation. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hanaa A. Galeb
- Department of Chemistry Lancaster University Lancaster LA1 4YB United Kingdom
- Department of Chemistry Science and Arts College, Rabigh Campus King Abdulaziz University Jeddah 21577 Saudi Arabia
| | - Angelo Lamantia
- Department of Physics Lancaster University Lancaster LA1 4YW United Kingdom
| | - Alexander Robson
- Department of Chemistry Lancaster University Lancaster LA1 4YB United Kingdom
| | - Katja König
- Institut für Organische und Makromolekulare Chemie Friedrich‐Schiller‐Universität Jena Lessingstraße 8 Jena 07743 Germany
| | - Jonas Eichhorn
- Institut für Organische und Makromolekulare Chemie Friedrich‐Schiller‐Universität Jena Lessingstraße 8 Jena 07743 Germany
| | - Sara J. Baldock
- Department of Chemistry Lancaster University Lancaster LA1 4YB United Kingdom
| | - Mark D. Ashton
- Department of Chemistry Lancaster University Lancaster LA1 4YB United Kingdom
| | - John V. Baum
- Department of Chemistry Lancaster University Lancaster LA1 4YB United Kingdom
| | - Richard L. Mort
- Division of Biomedical and Life Sciences Lancaster University Lancaster LA1 4YG United Kingdom
| | - Benjamin J. Robinson
- Department of Physics Lancaster University Lancaster LA1 4YW United Kingdom
- Materials Science Institute Lancaster University Lancaster LA1 4YB United Kingdom
| | - Felix H. Schacher
- Institut für Organische und Makromolekulare Chemie Friedrich‐Schiller‐Universität Jena Lessingstraße 8 Jena 07743 Germany
| | - Victor Chechik
- Department of Chemistry University of York Heslington, York YO10 5DD United Kingdom
| | - Adam M. Taylor
- Lancaster Medical School Lancaster University Lancaster LA1 4YW United Kingdom
| | - John G. Hardy
- Department of Chemistry Lancaster University Lancaster LA1 4YB United Kingdom
- Materials Science Institute Lancaster University Lancaster LA1 4YB United Kingdom
| |
Collapse
|
4
|
Gao L, Yang L, Guo L, Wang H, Zhao Y, Xie J, Shi N. Improving the solubility of melanin nanoparticles from apricot kernels is a potent drug delivery system. J Appl Biomater Funct Mater 2022; 20:22808000221124418. [DOI: 10.1177/22808000221124418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Melanin can be used in biomedical nanomaterials, but its solubility in water and bioavailability are low. Aim: Melanin nanoparticles were prepared and then PEG-natural melanin nanoparticles (NMNP-PEG) were obtained with good performance and optimize their (water solubility, dispersion stability, chelating metal ions, photothermal stability, drug delivery, and biocompatibility), therefore improve the water solubility of melanin and broaden its application scope in biology, medicine, food, and other fields. Methods: MFAK (melanin from apricot kernels) and NMNP-PEG were prepared and characterized using ultraviolet-visible spectrophotometry (UV-Vis), high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (NMR), and electron microscopy. The chelation rate of metal ions, photothermal effect, doxorubicin loading, and cytotoxicity (MCF-7 cells) were examined. Results: UV-Vis, HPLC, FTIR, and NMR indicated that NMNPs contained melanin. NMNPs could be successfully modified using PEG. Under physiological pH conditions (pH 7.4), the metal ion chelation rate of NMNP-PEG increased with time and peaked at 12 h. The photothermal assay showed a temperature enhancement of 26.3°C with 1 mg/mL NMNP-PEG, compared with 1.9℃ with water. The NMNP-PEGs had a typical peak for doxorubicin in the FTIR spectrum, and the peak intensity was proportional to the drug loading. The release of doxorubicin in an acidic buffer was 40.8% at 24 h, almost threefold that in a neutral buffer (11.9%). There was no obvious cytotoxicity from NMNP-PEG. Conclusion: NMNP-PEG displays good stability, high metal ion chelation ability, efficient photothermal conversion potential, drug-retaining capability, sustained controlled drug release, and biocompatibility. This study provides a theoretical basis for NMNP-PEG applications in medicine (targeting specific sites to diagnose and treat diseases), food (extending the shelf life of food), and biology (as metal ion chelating agents to remove heavy metals from wastewater).
Collapse
Affiliation(s)
- Li Gao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liu Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| | - Lixiao Guo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| | - Haibin Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| | - Yinghu Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi, China
| | - Jun Xie
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Nan Shi
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Roy S, Rhim JW. New insight into melanin for food packaging and biotechnology applications. Crit Rev Food Sci Nutr 2021; 62:4629-4655. [PMID: 33523716 DOI: 10.1080/10408398.2021.1878097] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanin is a dark brown to black biomacromolecule with biologically active multifunctional properties that do not have a precise chemical structure, but its structure mainly depends on the polymerization conditions during the synthesis process. Natural melanin can be isolated from various animal, plant, and microbial sources, while synthetic melanin-like compounds can be synthesized by simple polymerization of dopamine. Melanin is widely used in various areas due to its functional properties such as photosensitivity, light barrier property, free radical scavenging ability, antioxidant activity, etc. It also has an excellent ability to act as a reducing agent and capping agent to synthesize various metal nanoparticles. Melanin nanoparticles (MNP) or melanin-like nanoparticles (MLNP) have the unique potential to act as functional materials to improve nanocomposite films' physical and functional properties. Various food packaging and biomedical applications have been made alone or by mixing melanin or MLNP. In this review, the general aspects of melanin that highlight biological activity, along with a description of MNP and the use as nanofillers in packaging films as well as reducing and capping agents and biomedical applications, were comprehensively reviewed.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
7
|
Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films. Carbohydr Polym 2020; 231:115729. [DOI: 10.1016/j.carbpol.2019.115729] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022]
|
8
|
Juriga D, Laszlo I, Ludanyi K, Klebovich I, Chae CH, Zrinyi M. Kinetics of dopamine release from poly(aspartamide)-based prodrugs. Acta Biomater 2018; 76:225-238. [PMID: 29940369 DOI: 10.1016/j.actbio.2018.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023]
Abstract
Preparation of novel biocompatible and biodegradable polymer-based prodrugs that can be applied in complex drug delivery systems is one of the most researched fields in pharmaceutics. The kinetics of the drug release strongly depends on the physicochemical parameters of prodrugs as well as environmental properties, therefore precise kinetical description is crucial to design the appropriate polymer prodrug formula. The aim of the present study was to investigate the dopamine release from different poly(aspartamide) based dopamine drug conjugates in different environments and to work out a kinetic description which can be extended to describe drug release in similar systems. Poly(aspartamide) was conjugated with different amounts of dopamine. In order to alter the solubility of the conjugates, 2-aminoethanol was also grafted to the main chain. Chemical structure as well as physical properties such as solubility, lipophilicity measurements and thermogravimetric analysis has been carried out. Kinetics of dopamine release from the macromolecular prodrugs which has good water solubility has been studied and compared in different environments (phosphate buffer, Bromelain and α-Chymotrypsin). It was found that the kinetics of release in those solutions can be satisfactorily described by first order reaction rate. For poorly-soluble conjugates, the release of dopamine was considered as a result of coupling of diffusion and chemical reaction. Besides the time dependence of dopamine cleavage, a practical quantity, the half-life of the release of loading capacity has been introduced and evaluated. It was found, that dopamine containing macromolecular prodrugs exhibit prolonged release kinetics and the quantitative description of the kinetics, including the most important physical parameters provides a solid base for future pharmaceutical and medical studies. STATEMENT OF SIGNIFICANCE Poly(aspartamide) based polymer-drug conjugates are promising for controlled and prolonged drug delivery due to their biocompatibility and biodegradability. In this study different poly(aspartamide) based dopamine conjugates were synthesized which can protect dopamine from deactivation in the human body. Since there is no satisfying kinetics description for drug release from covalent polymer-drug conjugates in the literature, dopamine release was investigated in different environments and a complete kinetical description was worked out. This study demonstrates that poly(aspartamide) is able to protect conjugated dopamine from deactivation and provide prolonged release in alkaline pH as well as in the presence of different enzymes. Furthermore, detailed kinetical descriptions were demonstrated which can be used in case of other covalent polymer-drug conjugates.
Collapse
|
9
|
Kim E, Kang M, Tschirhart T, Malo M, Dadachova E, Cao G, Yin JJ, Bentley WE, Wang Z, Payne GF. Spectroelectrochemical Reverse Engineering DemonstratesThat Melanin’s Redox and Radical Scavenging Activities Are Linked. Biomacromolecules 2017; 18:4084-4098. [DOI: 10.1021/acs.biomac.7b01166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eunkyoung Kim
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, 5112 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering, University of Maryland, 8228 Paint
Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Mijeong Kang
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, 5112 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering, University of Maryland, 8228 Paint
Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Tanya Tschirhart
- American
Society for Engineering Education, Postdoctoral Fellowship Program, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Mackenzie Malo
- College
of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Canada
| | - Ekaterina Dadachova
- College
of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Canada
| | - Gaojuan Cao
- Center for Food
Safety and Applied Nutrition, U.S. Food
and Drug Administration, College Park, Maryland 20740, United States
| | - Jun-Jie Yin
- Center for Food
Safety and Applied Nutrition, U.S. Food
and Drug Administration, College Park, Maryland 20740, United States
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, 5112 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering, University of Maryland, 8228 Paint
Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Zheng Wang
- Center for
Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 4291 Fieldhouse Drive, 5112 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering, University of Maryland, 8228 Paint
Branch Drive, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Ambrico M. SPECIAL ISSUE: Melanin, a long lasting history bridging natural pigments and organic bioelectronics. POLYM INT 2016. [DOI: 10.1002/pi.5239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|