1
|
Solvent-Free Production by Extrusion of Bio-Based Poly(glycerol-co-diacids) Sheets for the Development of Biocompatible and Electroconductive Elastomer Composites. Polymers (Basel) 2022; 14:polym14183829. [PMID: 36145974 PMCID: PMC9502118 DOI: 10.3390/polym14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Faced with growing global demand for new potent, bio-based, biocompatible elastomers, the present study reports the solvent-free production of 13 pure and derived poly(glycerol-co-diacid) composite sheets exclusively using itaconic acid, sebacic acid, and 2,5-furandicarboxylic acid (FDCA) with glycerol. Herein, modified melt polycondensation and Co(II)-catalyzed polytransesterification were employed to produce all exploitable prepolymers, enabling the easy and rapid manufacturing of elastomer sheets by extrusion. Most of our samples were loaded with 4 wt% of various additives such as natural polysaccharides, synthetic polymers, and/or 25 wt% sodium chloride as porogen agents. The removal of unreacted monomers and acidic short oligomers was carried out by means of washing with NaHCO3 aqueous solution, and pH monitoring was conducted until efficient sheet surface neutralization. For each sheet, their surface morphologies were observed by Field-emission microscopy, and DSC was used to confirm their amorphous nature and the impact of the introduction of every additive. The chemical constitution of the materials was monitored by FTIR. Then, cytotoxicity tests were performed for six of our most promising candidates. Finally, we achieved the production of two different types of extrusion-made PGS elastomers loaded with 10 wt% PANI particulates and 4 wt% microcrystalline cellulose for adding potential electroconductivity and stability to the material, respectively. In a preliminary experiment, we showed the effectiveness of these materials as performant, time-dependent electric pH sensors when immersed in a persistent HCl atmosphere.
Collapse
|
2
|
McCarthy A, Saldana L, McGoldrick D, John JV, Kuss M, Chen S, Duan B, Carlson MA, Xie J. Large‐scale synthesis of compressible and re‐expandable three‐dimensional nanofiber matrices. NANO SELECT 2021. [DOI: 10.1002/nano.202000284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Alec McCarthy
- Department of Surgery – Transplant and Mary & Dick Holland Regenerative Medicine Program College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
| | - Lorenzo Saldana
- Department of Surgery – Transplant and Mary & Dick Holland Regenerative Medicine Program College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
| | - Daniel McGoldrick
- Department of Computer Science School of Computing & Design California State University ‐ Monterey Bay Seaside California USA
| | - Johnson V. John
- Department of Surgery – Transplant and Mary & Dick Holland Regenerative Medicine Program College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
| | - Mitchell Kuss
- Department of Surgery – Transplant and Mary & Dick Holland Regenerative Medicine Program College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
- Division of Cardiology Department of Internal Medicine University of Nebraska Medical Center Omaha Nebraska USA
| | - Shixuan Chen
- Department of Surgery – Transplant and Mary & Dick Holland Regenerative Medicine Program College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
| | - Bin Duan
- Department of Surgery – Transplant and Mary & Dick Holland Regenerative Medicine Program College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
- Division of Cardiology Department of Internal Medicine University of Nebraska Medical Center Omaha Nebraska USA
| | - Mark A. Carlson
- Department of Surgery‐General Surgery College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
- Surgery Department Nebraska‐Western Iowa Health Care System Omaha Nebraska USA
| | - Jingwei Xie
- Department of Surgery – Transplant and Mary & Dick Holland Regenerative Medicine Program College of Medicine University of Nebraska Medical Center Omaha Nebraska USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska‐Lincoln Lincoln Nebraska USA
| |
Collapse
|
3
|
Ashton MD, Appen IC, Firlak M, Stanhope NE, Schmidt CE, Eisenstadt WR, Hur B, Hardy JG. Wirelessly triggered bioactive molecule delivery from degradable electroactive polymer films. POLYM INT 2020. [DOI: 10.1002/pi.6089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mark D Ashton
- Department of Chemistry Lancaster University Lancaster UK
| | - Isabel C Appen
- Department of Chemistry Lancaster University Lancaster UK
| | - Melike Firlak
- Department of Chemistry Lancaster University Lancaster UK
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
| | - William R Eisenstadt
- Department of Electrical and Computer Engineering University of Florida, New Engineering Building Gainesville FL USA
| | - Byul Hur
- Department of Engineering Technology and Industrial Distribution Texas A&M University College Station TX USA
| | - John G Hardy
- Department of Chemistry Lancaster University Lancaster UK
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
- Materials Science Institute, Lancaster University Lancaster UK
| |
Collapse
|
4
|
Marešová P, Klímová B, Honegr J, Kuča K, Ibrahim WNH, Selamat A. Medical Device Development Process, and Associated Risks and Legislative Aspects-Systematic Review. Front Public Health 2020; 8:308. [PMID: 32903646 PMCID: PMC7438805 DOI: 10.3389/fpubh.2020.00308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/05/2020] [Indexed: 11/27/2022] Open
Abstract
Objective: Medical device development, from the product's conception to release to market, is very complex and relies significantly on the application of exact processes. This paper aims to provide an analysis and summary of current research in the field of medical device development methodologies, discuss its phases, and evaluate the associated legislative and risk aspects. Methods: The literature search was conducted to detect peer-reviewed studies in Scopus, Web of Science, and Science Direct, on content published between 2007 and November 2019. Based on exclusion and inclusion criteria, 13 papers were included in the first session and 11 were included in the second session. Thus, a total of 24 papers were analyzed. Most of the publications originated in the United States (7 out of 24). Results: The medical device development process comprises one to seven stages. Six studies also contain a model of the medical device development process for all stages or for just some of the stages. These studies specifically describe the concept stage during which all uncertainties, such as the clinical need definition, customer requirements/needs, finances, reimbursement strategy, team selection, and legal aspects, must be considered. Conclusion: The crucial factor in healthcare safety is the stability of factors over a long production time. Good manufacturing practices cannot be tested on individual batches of products; they must be inherently built into the manufacturing process. The key issues that must be addressed in the future are the consistency in the classification of devices throughout the EU and globally, and the transparency of approval processes.
Collapse
Affiliation(s)
- Petra Marešová
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Blanka Klímová
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jan Honegr
- Biomedical Research Centrum, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuča
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Wan Nur Hidayah Ibrahim
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czechia
- Faculty of Computing, Universiti Teknologi Malaysia & Media and Game Innovation Centre of Excellence (MaGICX), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Ali Selamat
- Faculty of Computing, Universiti Teknologi Malaysia & Media and Game Innovation Centre of Excellence (MaGICX), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Long T. Polymers in the press: catalyzing a reaction. POLYM INT 2019. [DOI: 10.1002/pi.5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tim Long
- Polymer InternationalVirginia Tech Blacksburg VI USA
| |
Collapse
|
6
|
Basu P, Saha N, Alexandrova R, Saha P. Calcium Phosphate Incorporated Bacterial Cellulose-Polyvinylpyrrolidone Based Hydrogel Scaffold: Structural Property and Cell Viability Study for Bone Regeneration Application. Polymers (Basel) 2019; 11:polym11111821. [PMID: 31698725 PMCID: PMC6918328 DOI: 10.3390/polym11111821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022] Open
Abstract
This work focuses on the analysis of structural and functional properties of calcium phosphate (CaP) incorporated bacterial cellulose (BC)-polyvinylpyrrolidone (PVP) based hydrogel scaffolds referred to as “CaP/BC-PVP”. CaP is incorporated in the scaffolds in the form of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) in different concentrations (β-TCP: HA (w/w) = 20:80, 40:60, and 50:50). The scaffolds were characterized on the basis of porosity, thermal, biodegradation, mechanical, and cell viability/cytocompatibility properties. The structural properties of all the hydrogel scaffolds show significant porosity. The biodegradation of “CaP/BC-PVP” scaffold was evaluated following hydrolytic degradation. Weight loss profile, pH change, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) study confirm the significant degradability of the scaffolds. It is observed that a 50:50_CaP/BC-PVP scaffold has the highest degree of degradation. On the other hand, the compressive strengths of CaP/BC-PVP hydrogel scaffolds are found between 0.21 to 0.31 MPa, which is comparable with the human trabecular bone. The cell viability study is performed with a human osteosarcoma Saos-2 cell line, where significant cell viability is observed in all the hydrogel scaffolds. This indicated their ability to facilitate cell growth and cell proliferation. Considering all these substantial properties, CaP/BC-PVP hydrogel scaffolds can be suggested for detailed investigation in the context of bone regeneration application.
Collapse
Affiliation(s)
- Probal Basu
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlín, Czech Republic; (P.B.); (P.S.)
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlín, Czech Republic; (P.B.); (P.S.)
- Correspondence: ; Tel.: +420-57603-8156
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Petr Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlín, Czech Republic; (P.B.); (P.S.)
| |
Collapse
|
7
|
Ghaemi RV, Siang LC, Yadav VG. Improving the Rate of Translation of Tissue Engineering Products. Adv Healthc Mater 2019; 8:e1900538. [PMID: 31386306 DOI: 10.1002/adhm.201900538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/04/2019] [Indexed: 12/18/2022]
Abstract
Over 100 000 research articles and 9000 patents have been published on tissue engineering (TE) in the past 20 years. Yet, very few TE products have made their way to the market during the same period. Experts have proposed a variety of strategies to address the lack of translation of TE products. However, since these proposals are guided by qualitative insights, they are limited in scope and impact. Machine learning is utilized in the current study to analyze the entire body of patents that have been published over the past twenty years and understand patenting trends, topics, areas of application, and exemplifications. This analysis yields surprising and little-known insights about the differences in research priorities and perceptions of innovativeness of tissue engineers in academia and industry, as well as aids to chart true advances in the field during the past twenty years. It is hoped that this analysis and subsequent proposal to improve translational rates of TE products will spur much needed dialogue about this important pursuit.
Collapse
Affiliation(s)
- Roza Vaez Ghaemi
- Department of Chemical and Biological Engineeringand School of Biomedical EngineeringThe University of British Columbia Vancouver V6T 1Z3 Canada
| | - Lim C. Siang
- Department of Chemical and Biological Engineeringand School of Biomedical EngineeringThe University of British Columbia Vancouver V6T 1Z3 Canada
| | - Vikramaditya G. Yadav
- Department of Chemical and Biological Engineeringand School of Biomedical EngineeringThe University of British Columbia Vancouver V6T 1Z3 Canada
| |
Collapse
|
8
|
de Lima GG, Elter JK, Chee BS, Magalhães WLE, Devine DM, Nugent MJD, de Sá MJC. A tough and novel dual-response PAA/P(NiPAAM-co-PEGDMA) IPN hydrogels with ceramics by photopolymerization for consolidation of bone fragments following fracture. ACTA ACUST UNITED AC 2019; 14:054101. [PMID: 31282388 DOI: 10.1088/1748-605x/ab2fa3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a novel dual-response hydrogel for enhanced bone repair following multiple fractures was investigated. The conventional treatment of multiple bone fracture consists on removing smaller bone fragments from the body in a surgery, followed by the fixation of the bone using screws and plates. This work proposes an alternative for this treatment via in situ UV-initiated radical polymerization of a novel IPN hydrogel composed of PAA/P(NiPAAM-co-PEGDMA) incorporated with ceramic additives. The influence of different additives on mechanical properties and sensitivity of the polymer, as well as the prepolymer mixture, were investigated in order to analyse the suitability of the composites for bone healing applications. This material exhibited an interpenetrating network, confirmed by FTIR, with ceramics particles dispersed in between the polymer network. These structures presented high strength by tensile tests, sensitivity to pH and temperature and a decrease on Tg values of NiPAAm depending on the amount of PEGDMA and ceramics added; although, the addition of ceramics to these composites did not decrease their stability drastically. Finally, cytotoxicity tests revealed variations on the toxicity, whereas the addition of TCP presented to be non-toxic and that the cell viability increased when ceramics additives were incorporated into the polymeric matrix with an increased reporter activity of NF-κB, associated with aiding fibroblast adhesion. Hence, it was possible to optimise feedstock ratios to increase the applicability of the prepolymer mixture as a potential treatment of multiple fractures.
Collapse
Affiliation(s)
- Gabriel Goetten de Lima
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland. Universidade Federal do Paraná, Programa de Pós-Graduação em Engenharia e Ciência dos Materiais - PIPE, Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Wilson R, Divakaran AV, S K, Varyambath A, Kumaran A, Sivaram S, Ragupathy L. Poly(glycerol sebacate)-Based Polyester-Polyether Copolymers and Their Semi-Interpenetrated Networks with Thermoplastic Poly(ester-ether) Elastomers: Preparation and Properties. ACS OMEGA 2018; 3:18714-18723. [PMID: 30613821 PMCID: PMC6312632 DOI: 10.1021/acsomega.8b02451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Poly(glycerol sebacate) (PGS), produced from renewable monomers such as sebacic acid and glycerol, has been explored extensively for various biomedical applications. However, relatively less attention has been paid to explore PGS as sustainable materials in applications such as elastomers and rigid plastics, primarily because of serious deficiencies in physical properties of PGS. Here, we present two new approaches for enhancing the properties of PGS; (i) synthesizing block copolymers of PGS with poly(tetramethylene oxide)glycol (PTMO) and (ii) preparing a blend of PGS-b-PTMO with a poly(ester-ether) thermoplastic elastomer. The consequence of molar ratio (hard and soft segments) and M n of soft segment on tensile properties of the material was investigated. The PGS-b-PTMO with 25:75 mole ratios of hard and soft segments and having a medium M n soft segment (5350 g mol-1) exhibits an appreciable increase in percentage of elongation that is from 32% for PGS to 737%. Blends of PGS-b-PTMO and a thermoplastic polyester elastomer, Hytrel 3078, form a semi-interpenetrated polymer network, which exhibits increased tensile strength to 2.11 MPa and percentage of elongation to 2574. An elongation of such magnitude is unprecedented in the literature for predominantly aliphatic polyesters and demonstrates that the simple polyester can be tailored for superior performance.
Collapse
Affiliation(s)
- Runcy Wilson
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Anumon V. Divakaran
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Kiran S
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Anuraj Varyambath
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Alaganandam Kumaran
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Swaminathan Sivaram
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
10
|
Sustaining our Passion for Sustainability. POLYM INT 2018. [DOI: 10.1002/pi.5733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|