1
|
Arango MC, Jaramillo-Quiceno N, Badia JD, Cháfer A, Cerisuelo JP, Álvarez-López C. The Impact of Green Physical Crosslinking Methods on the Development of Sericin-Based Biohydrogels for Wound Healing. Biomimetics (Basel) 2024; 9:497. [PMID: 39194476 DOI: 10.3390/biomimetics9080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Silk sericin (SS)-based hydrogels show promise for wound healing due to their biocompatibility, moisture regulation, and cell proliferation properties. However, there is still a need to develop green crosslinking methods to obtain non-toxic, absorbent, and mechanically strong SS hydrogels. This study investigated the effects of three green crosslinking methods, annealing treatment (T), exposure to an absolute ethanol vapor atmosphere (V.E), and water vapor (V.A), on the physicochemical and mechanical properties of SS and poly (vinyl alcohol) (PVA) biohydrogels. X-ray diffraction and Fourier-transform infrared spectroscopy were used to determine chemical structures. Thermal properties and morphological changes were studied through thermogravimetric analysis and scanning electron microscopy, respectively. The water absorption capacity, mass loss, sericin release in phosphate-buffered saline (PBS), and compressive strength were also evaluated. The results showed that physical crosslinking methods induced different structural transitions in the biohydrogels, impacting their mechanical properties. In particular, V.A hydrogen presented the highest compressive strength at 80% deformation owing to its compact and porous structure with crystallization and bonding sites. Moreover, both the V.A and T hydrogels exhibited improved absorption capacity, stability, and slow SS release in PBS. These results demonstrate the potential of green physical crosslinking techniques for producing SS/PVA biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Maria C Arango
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Natalia Jaramillo-Quiceno
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| | - José David Badia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Amparo Cháfer
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Josep Pasqual Cerisuelo
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Catalina Álvarez-López
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| |
Collapse
|
2
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Tuanchai A, Iamphring P, Suttaphakdee P, Boupan M, Mikule J, Pérez Aguilera JP, Worajittiphon P, Liu Y, Ross GM, Kunc S, Mikeš P, Unno M, Ross S. Bilayer Scaffolds of PLLA/PCL/CAB Ternary Blend Films and Curcumin-Incorporated PLGA Electrospun Nanofibers: The Effects of Polymer Compositions and Solvents on Morphology and Molecular Interactions. Polymers (Basel) 2024; 16:1679. [PMID: 38932029 PMCID: PMC11207424 DOI: 10.3390/polym16121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue engineering scaffolds have been dedicated to regenerating damaged tissue by serving as host biomaterials for cell adhesion, growth, differentiation, and proliferation to develop new tissue. In this work, the design and fabrication of a biodegradable bilayer scaffold consisting of a ternary PLLA/PCL/CAB blend film layer and a PLGA/curcumin (CC) electrospun fiber layer were studied and discussed in terms of surface morphology, tensile mechanical properties, and molecular interactions. Three different compositions of PLLA/PCL/CAB-60/15/25 (TBF1), 75/10/15 (TBF2), and 85/5/10 (TBF3)-were fabricated using the solvent casting method. The electrospun fibers of PLGA/CC were fabricated using chloroform (CF) and dimethylformamide (DMF) co-solvents in 50:50 and 60:40 volume ratios. Spherical patterns of varying sizes were observed on the surfaces of all blend films-TBF1 (17-21 µm) > TBF2 (5-9 µm) > TBF3 (1-5 µm)-caused by heterogeneous surfaces inducing bubble nucleation. The TBF1, TBF2, and TBF3 films showed tensile elongation at break values of approximately 170%, 94%, and 43%, respectively. The PLGA/CC electrospun fibers fabricated using 50:50 CF:DMF had diameters ranging from 100 to 400 nm, which were larger than those of the PLGA fibers (50-200 nm). In contrast, the PLGA/CC electrospun fibers fabricated using 60:40 CF:DMF had diameters mostly ranging from 200 to 700 nm, which were larger than those of PLGA fibers (200-500 nm). Molecular interactions via hydrogen bonding were observed between PLGA and CC. The surface morphology of the bilayer scaffold demonstrated adhesion between these two solid surfaces resembling "thread stitches" promoted by hydrophobic interactions, hydrogen bonding, and surface roughness.
Collapse
Affiliation(s)
- Areeya Tuanchai
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Phakanan Iamphring
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Pattaraporn Suttaphakdee
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Medta Boupan
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Jaroslav Mikule
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (J.M.)
| | - Juan Pablo Pérez Aguilera
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (J.M.)
| | - Patnarin Worajittiphon
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yujia Liu
- Department of Chemistry and Chemical Biology, Faculty of Science and Technology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan; (Y.L.); (M.U.)
| | - Gareth Michael Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| | - Stepan Kunc
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (S.K.); (P.M.)
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (S.K.); (P.M.)
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Faculty of Science and Technology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan; (Y.L.); (M.U.)
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (A.T.); (P.I.); (P.S.); (M.B.); (G.M.R.)
| |
Collapse
|
4
|
Tuancharoensri N, Sonjan S, Promkrainit S, Daengmankhong J, Phimnuan P, Mahasaranon S, Jongjitwimol J, Charoensit P, Ross GM, Viennet C, Viyoch J, Ross S. Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties. Polymers (Basel) 2023; 15:4052. [PMID: 37896296 PMCID: PMC10610211 DOI: 10.3390/polym15204052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Tailored porous structures of poly(2-hydroxyethyl methacrylate) (PHEMA) and silk sericin (SS) were used to create porous hydrogel scaffolds using two distinct crosslinking systems. These structures were designed to closely mimic the porous nature of the native extracellular matrix. Conventional free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) was performed in the presence of different concentrations of SS (1.25, 2.50, 5.00% w/v) with two crosslinking systems. A chemical crosslinking system with N'N-methylene bisacrylamide (MBAAm) and a physical crosslinking system with dimethylurea (DMU) were used: C-PHEMA/SS (crosslinked using MBAAm) and C-PHEMA/pC-SS (crosslinked using MBAAm and DMU). The focus of this study was on investigating the impact of these crosslinking methods on various properties of the scaffolds, including pore size, pore characteristics, polymerization time, morphology, molecular interaction, in vitro degradation, thermal properties, and in vitro cytotoxicity. The various crosslinked networks were found to appreciably influence the properties of the scaffolds, especially the pore sizes, in which smaller sizes and higher numbers of pores with high regularity were seen in C-PHEMA/1.25 pC-SS (17 ± 2 μm) than in C-PHEMA/1.25 SS (34 ± 3 μm). Semi-interpenetrating networks were created by crosslinking PHEMA-MBAAm-PHEMA while incorporating free protein molecules of SS within the networks. The additional crosslinking step involving DMU occurred through hydrogen bonding of the -C=O and -N-H groups with the SS, resulting in the simultaneous incorporation of DMU and SS within the PHEMA networks. As a consequence of this process, the scaffold C-PHEMA/pC-SS exhibited smaller pore sizes compared to scaffolds without DMU crosslinking. Moreover, the incorporation of higher loadings of SS led to even smaller pore sizes. Additionally, the gelation time of C-PHEMA/pC-SS was delayed due to the presence of DMU in the crosslinking system. Both porous hydrogel scaffolds, C-PHEMA/pC-SS and PHEMA, were found to be non-cytotoxic to the normal human skin dermal fibroblast cell line (NHDF cells). This promising result indicates that these hydrogel scaffolds have potential for use in tissue engineering applications.
Collapse
Affiliation(s)
- Nantaprapa Tuancharoensri
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Sukhonthamat Sonjan
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Sudarat Promkrainit
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Jinjutha Daengmankhong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Preeyawass Phimnuan
- Department of Pharmaceutical Technology, Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand (P.C.)
| | - Sararat Mahasaranon
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Jirapas Jongjitwimol
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
- Biomedical Sciences Program, Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Pensri Charoensit
- Department of Pharmaceutical Technology, Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand (P.C.)
| | - Gareth M. Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Céline Viennet
- UMR 1098 RIGHT INSERM EFS FC, DImaCell Imaging Resource Center, University of Franche-Comté, 25000 Besançon, France
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand (P.C.)
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| |
Collapse
|
5
|
Lee HG, Jang MJ, Park BD, Um IC. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers (Basel) 2023; 15:3405. [PMID: 37631462 PMCID: PMC10459888 DOI: 10.3390/polym15163405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Silk sericin has garnered the attention of researchers as a promising biomaterial because of its good biocompatibility and high water retention. However, despite its useful properties, the poor storage stability of sericin has restricted its extensive use in biorelated applications. This study extracted sericin from silkworm cocoon, dried and stored it as a solid, and then dissolved it in hot water conditions to improve the storage stability of sericin for its use. The dissolution behavior of the extracted sericin solids was examined in conjunction with the structural characteristics and properties of dissolved sericin. Consequently, the results of solution viscosity, gel strength, crystallinity index, and thermal decomposition temperature indicated that the molecular weight (MW) of the dissolved sericin remained constant until a dissolution time of 5 min, following which deterioration was observed. The optimum condition of dissolution of the extracted sericin solid was 5 min at 90 °C. Conclusively, the extracted sericin could be stored in a dry state and dissolved to prepare redissolved sericin aqueous solution with the same MW as extracted sericin, thereby improving the storage stability of the sericin aqueous solution.
Collapse
Affiliation(s)
- Hye Gyeoung Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Jaramillo-Quiceno N, Rueda-Mira S, Marín JFS, Álvarez-López C. Development of a novel silk sericin-based hydrogel film by mixture design. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractSericin has been used in functional and potentially biodegradable materials for cosmetics, biomedical, agricultural, and food applications. It is a natural polymer with applications in absorbent materials, such as hydrogels, because of its hydrophilic character. However, sericin by itself is brittle, and in contact with water has low structural stability, being necessary its blending with other polymers or the application of crosslinking processes. In this work, hydrogel films were prepared from different mixtures containing sericin (SS), carboxymethylcellulose (CMC), and polyvinyl alcohol (PVA), using a simple and environmentally friendly method consisting of a gelling process followed by solvent casting. A mixture design was applied to assess the incidence of each component and its interaction with the output variables of interest. Two response variables were evaluated in each formulation: water absorption capacity (WA) and gel fraction (GF). It was also possible to model the output variables based on the proportions of the sample components. In addition, a set of formulations were used to produce hydrogels with high water absorption rates while maintaining their structural stability. The optimal hydrogel formulation (HF) was structurally and thermally characterized by FTIR and TGA, respectively. Hydrogel morphology was also studied by scanning electron microscopy (SEM). The results of this study constitute an important contribution to the design of novel processing routes to extend the use of silk sericin in the development of new materials.
Collapse
|
7
|
Tuancharoensri N, Ross GM, Kongprayoon A, Mahasaranon S, Pratumshat S, Viyoch J, Petrot N, Ruanthong W, Punyodom W, Topham PD, Tighe BJ, Ross S. In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modelling. Polymers (Basel) 2023; 15:polym15020303. [PMID: 36679184 PMCID: PMC9864367 DOI: 10.3390/polym15020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Ternary-blended, melt-blown films of polylactide (PLA), polycaprolactone (PCL) and cellulose acetate butyrate (CAB) were prepared from preliminary miscibility data using a rapid screening method and optical ternary phase diagram (presented as clear, translucent, and opaque regions) as a guide for the composition selection. The compositions that provided optically clear regions were selected for melt blending. The ternary (PLA/PCL/CAB) blends were first melt-extruded and then melt-blown to form films and characterized for their tensile properties, tensile fractured-surface morphology, miscibility, crystallinity, molecular weight and chemical structure. The results showed that the tensile elongation at the break (%elongation) of the ternary-blended, melt-blown films (85/5/10, 75/10/15, 60/15/25 of PLA/PCL/CAB) was substantially higher (>350%) than pure PLA (ca. 20%). The range of compositions in which a significant increase in %elongation was observed at 55−85% w/w PLA, 5−20% w/w PCL and 10−25% w/w CAB. Films with high %elongation all showed good interfacial interactions between the dispersed phase (PCL and CAB) and matrix (PLA) in FE-SEM and showed improvements in miscibility (higher intermolecular interaction and mixing) and a decrease in the glass transition temperature, when compared to the low %elongation films. The decrease in Mw and Mn and the formation of the new NMR peaks (1H NMR at 3.68−3.73 ppm and 13C NMR at 58.54 ppm) were observed in only the high %elongation films. These are expected to be in situ compatibilizers that are generated during the melt processing, mostly by chain scission. In addition, mathematical modelling was used to study the optimal ratio and cost-effectiveness of blends with optimised mechanical properties. These ternary-blended, melt-blown films have the potential for use in both packaging and medical devices with excellent mechanical performance as well as inherent economic and environmental capabilities.
Collapse
Affiliation(s)
- Nantaprapa Tuancharoensri
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M. Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Arisa Kongprayoon
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sararat Mahasaranon
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Supatra Pratumshat
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Narin Petrot
- Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wuttipong Ruanthong
- Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Department of Computer Science and Information Technology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paul D. Topham
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Brian J. Tighe
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-963-445; Fax: +66-55-963-402
| |
Collapse
|
8
|
Namhongsa M, Daranarong D, Sriyai M, Molloy R, Ross S, Ross GM, Tuantranont A, Tocharus J, Sivasinprasasn S, Topham PD, Tighe B, Punyodom W. Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning. Biomacromolecules 2022; 23:4532-4546. [PMID: 36169096 DOI: 10.1021/acs.biomac.2c00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these "PLCL-3D/E" and "PLGA-3D/E" scaffolds exhibited a combination of nano- and microscale structures. The mean pore size of PLCL-3D/E and PLGA-3D/E scaffolds were 289 ± 79 and 287 ± 95 nm, respectively, which meets the required pore size for NGCs. Furthermore, the addition of PPy on the surfaces of both PLCL-3D/E (PLCL-3D/E/PPy) and PLGA-3D/E (PLGA-3D/E/PPy) led to an increase in their hydrophilicity, conductivity, and noncytotoxicity compared to noncoated PPy scaffolds. Both PLCL-3D/E/PPy and PLGA-3D/E/PPy showed conductivity maintained at 12.40 ± 0.12 and 10.50 ± 0.08 Scm-1 for up to 15 and 9 weeks, respectively, which are adequate for the electroconduction of neuron cells. Notably, the PLGA-3D/E/PPy scaffold showed superior cytocompatibility when compared with PLCL-3D/E/PPy, as evident via the viability assay, proliferation, and attachment of L929 and SC cells. Furthermore, analysis of cell health through membrane leakage and apoptotic indices showed that the 3D/E/PPy scaffolds displayed significant decreases in membrane leakage and reductions in necrotic tissue. Our finding suggests that these 3D/E/PPy scaffolds have a favorable design architecture and biocompatibility with potential for use in peripheral nerve regeneration applications.
Collapse
Affiliation(s)
- Manasanan Namhongsa
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Sriyai
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M Ross
- Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Adisorn Tuantranont
- National Security and Dual-Use Technology Center, National Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paul D Topham
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, United Kingdom
| | - Brian Tighe
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, United Kingdom
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Kongprayoon A, Ross G, Limpeanchob N, Mahasaranon S, Punyodom W, Topham PD, Ross S. Bio-derived and biocompatible poly(lactic acid)/silk sericin nanogels and their incorporation within poly(lactide- co-glycolide) electrospun nanofibers. Polym Chem 2022. [DOI: 10.1039/d2py00330a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bio-derived and biocompatible nanogels based on poly(lactic acid) (PLA) and silk sericin (SS) have been synthesized for the first time.
Collapse
Affiliation(s)
- Arisa Kongprayoon
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth Ross
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Biopolymer Group, Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Biopolymer Group, Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Paul D. Topham
- Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Biopolymer Group, Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
10
|
Tuancharoensri N, Ross G, Punyodom W, Mahasaranon S, Jongjitwimol J, Topham PD, Ross S. Multifunctional core–shell electrospun nanofibrous fabrics of poly(vinyl alcohol)/silk sericin (core) and poly(lactide‐
co
‐glycolide) (shell). POLYM INT 2021. [DOI: 10.1002/pi.6319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Gareth Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology Chiang Mai University Chiang Mai Thailand
- Department of Chemistry, Faculty of Science Chiang Mai University Chiang Mai Thailand
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| | - Jirapas Jongjitwimol
- Clinical Microbiology, Department of Medical Technology Faculty of Allied Health Sciences, Naresuan University Phitsanulok Thailand
| | - Paul D Topham
- Aston Institute of Materials Research Aston University Birmingham UK
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| |
Collapse
|
11
|
Vineis C, Cruz Maya I, Mowafi S, Varesano A, Sánchez Ramírez DO, Abou Taleb M, Tonetti C, Guarino V, El-Sayed H. Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications. Int J Biol Macromol 2021; 190:375-381. [PMID: 34499951 DOI: 10.1016/j.ijbiomac.2021.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
Protein-based nanomaterials are gaining growing interest in biomedical field. The present paper evaluates the physico-chemical properties of electrospun nanofibers resulting from the combination of gelatin with keratin (from wool) and sericin (from silk) to validate their use for in vitro interaction studies. We demonstrated that that presence of sericin influences the fiber morphology at macroscopic level - i.e., wide diameter distributions by SEM and image analysis - with effects on chemical - i.e., a decrease of hydrogen bonds of NH groups verified by infrared spectroscopy - and thermal behavior of electrospun nanofibers, in comparison with gelatin-based ones. Moreover, we verified that sericin, in combination with keratin macromolecules, can amplify the biochemical signal of gelatin, improving the in-vitro stability of gelatin-based nanofibers. In vitro results confirm a synergistic effect of sericin and keratin on human Mesenchymal Stem Cells (hMSC) proliferation - increase over 50% respect to other types - associated to the enhancement of in vitro stability directly ascribable to the peculiar physical interaction among the proteins. These findings suggest the use of sericin/keratin/gelatin enriched electrospun fibers as nanostructured platforms for interface tissue engineering.
Collapse
Affiliation(s)
- C Vineis
- CNR-STIIMA (National Research Council - Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Corso Giuseppe Pella 16, 13900 Biella, Italy
| | - I Cruz Maya
- CNR-IPCB (National Research Council - Institute for Polymers, Composites and Biomaterials), Mostra d'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125 Napoli, Italy
| | - S Mowafi
- National Research Centre, Textile Industries Research Division, El-Behouth St. 33, 12622-Dokki, Giza, Egypt
| | - A Varesano
- CNR-STIIMA (National Research Council - Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Corso Giuseppe Pella 16, 13900 Biella, Italy.
| | - D O Sánchez Ramírez
- CNR-STIIMA (National Research Council - Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Corso Giuseppe Pella 16, 13900 Biella, Italy
| | - M Abou Taleb
- National Research Centre, Textile Industries Research Division, El-Behouth St. 33, 12622-Dokki, Giza, Egypt
| | - C Tonetti
- CNR-STIIMA (National Research Council - Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Corso Giuseppe Pella 16, 13900 Biella, Italy
| | - V Guarino
- CNR-IPCB (National Research Council - Institute for Polymers, Composites and Biomaterials), Mostra d'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125 Napoli, Italy.
| | - H El-Sayed
- National Research Centre, Textile Industries Research Division, El-Behouth St. 33, 12622-Dokki, Giza, Egypt
| |
Collapse
|
12
|
|
13
|
Zhao JJ, Liu DC, Yu YH, Tang H. Development of Gelatin-Silk Sericin Incorporated with Poly(vinyl alcohol) Hydrogel-Based Nanocomposite for Articular Cartilage Defects in Rat Knee Joint Repair. J Biomed Nanotechnol 2021; 17:242-252. [PMID: 33785095 DOI: 10.1166/jbn.2021.3024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sericin, a silk protein, has a high potential for use as an extracellular matrix in tissue engineering applications. In this study, novel gelatin (GEL) and silk sericin (SS) were incorporated with a polyvinyl alcohol) PVA hydrogel nanocomposite (GEL-SS-PVA) scaffold that can be applied to repair cartilage. Glutaraldehyde was used as a cross-linking agent, with hydrochloric acid acting as an initiator. The microstructure characteristics of the obtained GEL-SS and GEL-SS-PVA scaffolds were also examined using FTIR and XRD spectra and their enhanced thermal stability was assessed by TGA. The blended GEL-SS and GEL-SS-PVA scaffolds were confirmed by SEM analysis to be highly porous with optimum pore sizes of 172 and 58 µm, respectively. Smaller pore sizes and improved uniformity were observed as the concentration of PVA in the GEL-SS-PVA scaffold increased. PVA decreased the tensile strength and elongation of the membranes but increased the modulus. Swelling studies showed high swellability and complete degradation in the presence of phosphate-buffered saline. Cytocompatibility of the GEL-SS-PVA scaffolds showed that these had the highest potential to promote cell proliferation as evaluated with standard microscopy using L929 fibroblasts. The prepared GEL-SS composite scaffold incorporated with the PVA hydrogel was implanted in full-thickness articular cartilage defects in rats. The repair effect of cartilage defects was observed and evaluated among the GEL-SS-PVA, GEL-SS, and control operation groups. The defects were almost completely repaired after 14 weeks in the GEL-SS-PVA group, thereby indicating that the GEL-SS-PVA composite had a favorable effect on articular cartilage defects in rat knee joint repair.
Collapse
Affiliation(s)
- Ji-Jun Zhao
- Department of Orthopedics, Wuxi People's Hospital, Wuxi 214023, China
| | - Dong-Cheng Liu
- Department of Orthopedics, Wuxi People's Hospital, Wuxi 214023, China
| | - Ying-Hao Yu
- Department of Orthopedics, Ninth People's Hospital of Wuxi, Wuxi 214062, China
| | - Hongtao Tang
- Department of Hip Injury and Disease, Orthopedic Hospital of Henan Province, Luoyang 471002, China
| |
Collapse
|
14
|
Reddy R, Jiang Q, Aramwit P, Reddy N. Litter to Leaf: The Unexplored Potential of Silk Byproducts. Trends Biotechnol 2020; 39:706-718. [PMID: 33279278 DOI: 10.1016/j.tibtech.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Silk has remained the most preferred protein fiber since its discovery in 3000 BC. However, the cost, availability, and resources required to rear the silkworms and process silk are imposing considerable constraints on the future of silk. It is often unrealized that apart from the fibers, production and processing of silk are a source for a diverse range of sustainable, biodegradable, and biocompatible polymers. Hence, delineating itself from being the primary source of protein fibers for millenniums, the silk industry worldwide is transitioning into a biobased industry and as a source for pharmaceuticals, biomaterials, cosmetics, food, and energy. Toward this, byproducts (BPs) and co-products (CPs) that are inevitably generated are now being considered to be of immense economic value and could be up to 10 times more valuable than the silk fibers. Here, we elucidate the properties and potential applications of silk BPs and CPs to present the true potential of silkworms and to promote the establishment of silkworm-based bioeconomy and biorefineries.
Collapse
Affiliation(s)
- Roopa Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560082, Karnataka, India
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand 10330; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand 10330
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560082, Karnataka, India.
| |
Collapse
|