1
|
Mori T, Wang H, Zhang W, Ser CC, Arora D, Pan CF, Li H, Niu J, Rahman MA, Mori T, Koishi H, Yang JKW. Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials. Nat Commun 2023; 14:5876. [PMID: 37735573 PMCID: PMC10514194 DOI: 10.1038/s41467-023-41535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Two-photon polymerization lithography is promising for producing three-dimensional structures with user-defined micro- and nanoscale features. Additionally, shrinkage by thermolysis can readily shorten the lattice constant of three-dimensional photonic crystals and enhance their resolution and mechanical properties; however, this technique suffers from non-uniform shrinkage owing to substrate pinning during heating. Here, we develop a simple method using poly(vinyl alcohol)-assisted uniform shrinking of three-dimensional printed structures. Microscopic three-dimensional printed objects are picked and placed onto a receiving substrate, followed by heating to induce shrinkage. We show the successful uniform heat-shrinking of three-dimensional prints with various shapes and sizes, without sacrificial support structures, and observe that the surface properties of the receiving substrate are important factors for uniform shrinking. Moreover, we print a three-dimensional mascot model that is then uniformly shrunk, producing vivid colors from colorless woodpile photonic crystals. The proposed method has significant potential for application in mechanics, optics, and photonics.
Collapse
Affiliation(s)
- Tomohiro Mori
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
- Industrial Technology Center of Wakayama Prefecture, Wakayama, 6496261, Japan.
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China.
| | - Wang Zhang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Chern Chia Ser
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Deepshikha Arora
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Cheng-Feng Pan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Hao Li
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jiabin Niu
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - M A Rahman
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Takeshi Mori
- Industrial Technology Center of Wakayama Prefecture, Wakayama, 6496261, Japan
| | - Hideyuki Koishi
- Industrial Technology Center of Wakayama Prefecture, Wakayama, 6496261, Japan
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
| |
Collapse
|
2
|
Jing X, Fu H, Yu B, Sun M, Wang L. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates. Front Bioeng Biotechnol 2022; 10:994355. [PMID: 36072288 PMCID: PMC9441635 DOI: 10.3389/fbioe.2022.994355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 01/23/2023] Open
Abstract
The needs for high-resolution, well-defined and complex 3D microstructures in diverse fields call for the rapid development of novel 3D microfabrication techniques. Among those, two-photon polymerization (TPP) attracted extensive attention owing to its unique and useful characteristics. As an approach to implementing additive manufacturing, TPP has truly 3D writing ability to fabricate artificially designed constructs with arbitrary geometry. The spatial resolution of the manufactured structures via TPP can exceed the diffraction limit. The 3D structures fabricated by TPP could properly mimic the microenvironment of natural extracellular matrix, providing powerful tools for the study of cell behavior. TPP can meet the requirements of manufacturing technique for 3D scaffolds (engineering cell culture matrices) used in cytobiology, tissue engineering and regenerative medicine. In this review, we demonstrated the development in 3D microfabrication techniques and we presented an overview of the applications of TPP as an advanced manufacturing technique in complex 3D biomedical scaffolds fabrication. Given this multidisciplinary field, we discussed the perspectives of physics, materials science, chemistry, biomedicine and mechanical engineering. Additionally, we dived into the principles of tow-photon absorption (TPA) and TPP, requirements of 3D biomedical scaffolders, developed-to-date materials and chemical approaches used by TPP and manufacturing strategies based on mechanical engineering. In the end, we draw out the limitations of TPP on 3D manufacturing for now along with some prospects of its future outlook towards the fabrication of 3D biomedical scaffolds.
Collapse
Affiliation(s)
- Xian Jing
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Long T. The importance of sharing ideas: recognizing the 140th anniversary of
SCI
leadership. POLYM INT 2022. [DOI: 10.1002/pi.6409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
D–π–A–π–D Initiators Based on Benzophenone Conjugate Extension for Two-Photon Polymerization Additive Manufacturing. PHOTONICS 2022. [DOI: 10.3390/photonics9030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A two-photon polymerization initiator is a kind of nonlinear optical material. With the demand for more efficient initiators in two-photon polymerization additive manufacturing, there are more and more related studies. In this paper, four conjugate-extended two-photon polymerization initiators with different alkane chain lengths were designed and synthesized, and single-photon, two-photon, and photodegradation experiments were carried out. Additive manufacturing experiments illustrated that the designed molecules can be used as two-photon initiators, and the writing speed can achieve 100,000 μm/s at a laser power of 25 mW. Through theoretical calculation and experimental comparison of the properties of molecules with different conjugation degrees, it was proven that a certain degree of conjugation extension can improve the initiation ability of molecules; however, this improvement cannot be extended infinitely. Solubility tests of different acrylates showed that molecules with different alkane chain lengths have varying solubility. Changing the molecular alkane chain length may be favorable to adapt to different monomers.
Collapse
|
5
|
Shiohara A, Prieto-Simon B, Voelcker NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021; 9:2129-2154. [PMID: 33283821 DOI: 10.1039/d0tb01727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous polymeric membranes have shown great potential in biological and biomedical applications such as tissue engineering, bioseparation, and biosensing, due to their structural flexibility, versatile surface chemistry, and biocompatibility. This review outlines the advantages and limitations of the fabrication techniques commonly used to produce porous polymeric membranes, with especial focus on those featuring nano/submicron scale pores, which include track etching, nanoimprinting, block-copolymer self-assembly, and electrospinning. Recent advances in membrane technology have been key to facilitate precise control of pore size, shape, density and surface properties. The review provides a critical overview of the main biological and biomedical applications of these porous polymeric membranes, especially focusing on drug delivery, tissue engineering, biosensing, and bioseparation. The effect of the membrane material and pore morphology on the role of the membranes for each specific application as well as the specific fabrication challenges, and future prospects of these membranes are thoroughly discussed.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simon
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| |
Collapse
|
6
|
Zhao T, Yu R, Huang W, Zhao W, Wang G. Aliphatic silicone‐epoxy based hybrid photopolymers applied in stereolithography
3D
printing. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tingting Zhao
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences Beijing People's Republic of China
- University of Chinese Academy of Science Beijing People's Republic of China
| | - Ran Yu
- Institute of Chemistry Chinese Academy of Sciences Beijing People's Republic of China
| | - Wei Huang
- University of Chinese Academy of Science Beijing People's Republic of China
- Institute of Chemistry Chinese Academy of Sciences Beijing People's Republic of China
| | - Wei Zhao
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences Beijing People's Republic of China
- University of Chinese Academy of Science Beijing People's Republic of China
| | - Gong Wang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences Beijing People's Republic of China
- University of Chinese Academy of Science Beijing People's Republic of China
| |
Collapse
|
7
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Zhang X, Wang J. Controllable interfacial adhesion behaviors of polymer-on-polymer surfaces during fused deposition modeling 3D printing process. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Balčiūnas E, Dreižė N, Grubliauskaitė M, Urnikytė S, Šimoliūnas E, Bukelskienė V, Valius M, Baldock SJ, Hardy JG, Baltriukienė D. Biocompatibility Investigation of Hybrid Organometallic Polymers for Sub-Micron 3D Printing via Laser Two-Photon Polymerisation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3932. [PMID: 31783647 PMCID: PMC6926539 DOI: 10.3390/ma12233932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 01/20/2023]
Abstract
Hybrid organometallic polymers are a class of functional materials which can be used to produce structures with sub-micron features via laser two-photon polymerisation. Previous studies demonstrated the relative biocompatibility of Al and Zr containing hybrid organometallic polymers in vitro. However, a deeper understanding of their effects on intracellular processes is needed if a tissue engineering strategy based on these materials is to be envisioned. Herein, primary rat myogenic cells were cultured on spin-coated Al and Zr containing polymer surfaces to investigate how each material affects the viability, adhesion strength, adhesion-associated protein expression, rate of cellular metabolism and collagen secretion. We found that the investigated surfaces supported cellular growth to full confluency. A subsequent MTT assay showed that glass and Zr surfaces led to higher rates of metabolism than did the Al surfaces. A viability assay revealed that all surfaces supported comparable levels of cell viability. Cellular adhesion strength assessment showed an insignificantly stronger relative adhesion after 4 h of culture than after 24 h. The largest amount of collagen was secreted by cells grown on the Al-containing surface. In conclusion, the materials were found to be biocompatible in vitro and have potential for bioengineering applications.
Collapse
Affiliation(s)
- Evaldas Balčiūnas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Nadežda Dreižė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Monika Grubliauskaitė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Silvija Urnikytė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Egidijus Šimoliūnas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Virginija Bukelskienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Sara J. Baldock
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| |
Collapse
|