1
|
Rakhshani A, Maghsoudian S, Ejarestaghi NM, Yousefi M, Yoosefi S, Asadzadeh N, Fatahi Y, Darbasizadeh B, Nouri Z, Bahadorikhalili S, Shaabani A, Farhadnejad H, Motasadizadeh H. Polyethylene oxide-chitosan-doxorubicin/polycaprolactone-chitosan-curcumin pH-sensitive core/shell nanofibrous mats for the treatment of breast cancer: Fabrication, characterization and in vitro and in vivo evaluation. Int J Biol Macromol 2025; 305:141191. [PMID: 39971028 DOI: 10.1016/j.ijbiomac.2025.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The main objective of this study was to fabricate a pH-sensitive drug carrier based on coaxial electrospun nanofibrous mats for concurrent local delivery of hydrophilic and hydrophobic anti-cancer drugs to improve the anti-tumor efficacy on breast cancer. Therefore, co-axial electrospinning technique was applied to prepare polyethylene oxide-chitosan/polycaprolactone-chitosan (PEO-CS/PCL-CS) pH-sensitive core-shell nanofibers. Doxorubicin hydrochloride (DOX, hydrophilic anti-cancer) and curcumin (CUR, hydrophobic anticancer) were loaded into core and shell sections of the fabricated pH-sensitive coaxial nanofibers, respectively. Their structure and morphology were analyzed via SEM, TEM, TGA, and FTIR techniques. The results of in vitro release analysis indicated that the release of DOX and CUR from the fabricated nanofibers was strongly depended on pH. The combined effects of the two drugs on MCF-7 cell inhibition, as measured by the MTT assay, revealed that the 1:5 ratio of DOX to CUR resulted in a CI of 0.00492, showing the strongest synergistic effect. The results of in-vivo studies indicated that the PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibers possessed remarkable anti-tumor efficacy. As a result, PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibrous mats with pH-responsive and sustainable and controllable manner could improve the local anti-tumor efficacy on breast cancer via inhibiting the side effects of free DOX and CUR drugs.
Collapse
Affiliation(s)
- Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Yousefi
- Department of Healthcare Emergency Management, Faculty of Medicine, Boston University, Boston, MA, USA; Graduate, Veterinary Medicine School, Āzad University, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Asadzadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Suner SC, Oral A, Yildirim Y. Design of Poly(lactic) acid/gelatin core-shell bicomponent systems as a potential wound dressing material. J Mech Behav Biomed Mater 2024; 150:106255. [PMID: 38039772 DOI: 10.1016/j.jmbbm.2023.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The electrospun core-shell nanofiber has great many advantages such as different types of solvents that can be used for changing flexibility, mechanical properties, or surface chemistry of fiber. Hydrophobic Poly(lactic) acid (PLA) and hydrophilic gelatin (Gel) were electrospun by various preparation conditions to design perfect bicomponent PLA:Gel nanofiber in a core-shell structure. Solvent types, the concentration of polymeric components, flow rate, and voltage of the electrospinning process were changed to optimization of nanofiber. According to the SEM images, the best nanofiber structure without beads was obtained at 0.4 ml/h flow rate of PLA solution and 1.2 ml/h flow rate of Gel solution at 45:55 (w:w %) weight ratio of PLA:Gel in trifluoroethanol solvent with a 10 kV voltage at 10 cm distance to the collector. From the TEM images, the existence of the core-shell structure had been proved which all prepared nanofibers with 2,2,2-Trifluoroethanol solvent. Furthermore, contact angle measurements showed a change in wettability when the Gel amount was increased. Therefore, the mildest synthesis conditions were determined for bicomponent PLA:Gel core-shell nanofibers as a potential wound dressing and dual drug carrier materials.
Collapse
Affiliation(s)
- Salih Can Suner
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Canakkale Onsekiz Mart University, Canakkale, Turkey; Canakkale Onsekiz Mart University Science and Technology Application and Research Laboratory, 17020, Canakkale, Turkey
| | - Ayhan Oral
- Department of Chemistry, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Yeliz Yildirim
- Department of Chemistry, Faculty of Sciences, Ege University, Izmir, Turkey; Center for Drug Research and Development and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Wildy M, Lu P. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7062. [PMID: 38004992 PMCID: PMC10672065 DOI: 10.3390/ma16227062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Electrospun nanofibers for drug delivery systems (DDS) introduce a revolutionary means of administering pharmaceuticals, holding promise for both improved drug efficacy and reduced side effects. These biopolymer nanofiber membranes, distinguished by their high surface area-to-volume ratio, biocompatibility, and biodegradability, are ideally suited for pharmaceutical and biomedical applications. One of their standout attributes is the capability to offer the controlled release of the active pharmaceutical ingredient (API), allowing custom-tailored release profiles to address specific diseases and administration routes. Moreover, stimuli-responsive electrospun DDS can adapt to conditions at the drug target, enhancing the precision and selectivity of drug delivery. Such localized API delivery paves the way for superior therapeutic efficiency while diminishing the risk of side effects and systemic toxicity. Electrospun nanofibers can foster better patient compliance and enhanced clinical outcomes by amplifying the therapeutic efficiency of routinely prescribed medications. This review delves into the design principles and techniques central to achieving controlled API release using electrospun membranes. The advanced drug release mechanisms of electrospun DDS highlighted in this review illustrate their versatility and potential to improve the efficacy of medical treatments.
Collapse
Affiliation(s)
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| |
Collapse
|
4
|
Lee CH, Chen DY, Hsieh MJ, Hung KC, Huang SC, Cho CJ, Liu SJ. Nanofibrous insulin/vildagliptin core-shell PLGA scaffold promotes diabetic wound healing. Front Bioeng Biotechnol 2023; 11:1075720. [PMID: 37168611 PMCID: PMC10164987 DOI: 10.3389/fbioe.2023.1075720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Slow wound repair in diabetes is a serious adverse event that often results in loss of a limb or disability. An advanced and encouraging vehicle is wanted to enhance clinically applicable diabetic wound care. Nanofibrous insulin/vildagliptin core-shell biodegradable poly (lactic-co-glycolic acid) (PLGA) scaffolds to prolong the effective drug delivery of vildagliptin and insulin for the repair of diabetic wounds were prepared. Methods: To fabricate core-shell nanofibrous membranes, vildagliptin mixture with PLGA, and insulin solution were pumped via separate pumps into two differently sized capillary tubes that were coaxially electrospun. Results and Discussion: Nanofibrous core-shell scaffolds slowly released effective vildagliptin and insulin over 2 weeks in vitro migration assay and in vivo wound-healing models. Water contact angle (68.3 ± 8.5° vs. 121.4 ± 2.0°, p = 0.006) and peaked water absorbent capacity (376% ± 9% vs. 283% ± 24%, p = 0.003) of the insulin/vildagliptin core-shell nanofibrous membranes remarkably exceeded those of a control group. The insulin/vildagliptin-loaded core-shell nanofibers improved endothelial progenitor cells migration in vitro (762 ± 77 cells/mm2 vs. 424.4 ± 23 cells/mm2, p < 0.001), reduced the α-smooth muscle actin content in vivo (0.72 ± 0.23 vs. 2.07 ± 0.37, p < 0.001), and increased diabetic would recovery (1.9 ± 0.3 mm2 vs. 8.0 ± 1.4 mm2, p = 0.002). Core-shell insulin/vildagliptin-loaded nanofibers extend the drug delivery of insulin and vildagliptin and accelerate the repair of wounds associated with diabetes.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
- *Correspondence: Chen-Hung Lee, ; Chia-Jung Cho, ; Shih-Jung Liu,
| | - Dong-Yi Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Cho
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- *Correspondence: Chen-Hung Lee, ; Chia-Jung Cho, ; Shih-Jung Liu,
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chen-Hung Lee, ; Chia-Jung Cho, ; Shih-Jung Liu,
| |
Collapse
|
5
|
Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold. Int J Mol Sci 2022; 23:ijms232214055. [PMID: 36430534 PMCID: PMC9698895 DOI: 10.3390/ijms232214055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.
Collapse
|
6
|
Singh B, Kim K, Park MH. On-Demand Drug Delivery Systems Using Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3411. [PMID: 34947758 PMCID: PMC8707398 DOI: 10.3390/nano11123411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
On-demand drug-delivery systems using nanofibers are extensively applicable for customized drug release based on target location and timing to achieve the desired therapeutic effects. A nanofiber formulation is typically created for a certain medication and changing the drug may have a significant impact on the release kinetics from the same delivery system. Nanofibers have several distinguishing features and properties, including the ease with which they may be manufactured, the variety of materials appropriate for processing into fibers, a large surface area, and a complex pore structure. Nanofibers with effective drug-loading capabilities, controllable release, and high stability have gained the interest of researchers owing to their potential applications in on-demand drug delivery systems. Based on their composition and drug-release characteristics, we review the numerous types of nanofibers from the most recent accessible studies. Nanofibers are classified based on their mechanism of drug release, as well as their structure and content. To achieve controlled drug release, a suitable polymer, large surface-to-volume ratio, and high porosity of the nanofiber mesh are necessary. The properties of nanofibers for modified drug release are categorized here as protracted, stimulus-activated, and biphasic. Swellable or degradable polymers are commonly utilized to alter drug release. In addition to the polymer used, the process and ambient conditions can have considerable impacts on the release characteristics of the nanofibers. The formulation of nanofibers is highly complicated and depends on many variables; nevertheless, numerous options are available to accomplish the desired nanofiber drug-release characteristics.
Collapse
Affiliation(s)
- Baljinder Singh
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea;
| | - Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
| | - Myoung-Hwan Park
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea;
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea
- N to B Co., Ltd., Business Incubator Center, Hwarang-ro, Nowon-gu, Seoul 01795, Korea
| |
Collapse
|