1
|
Wang H, Polara H, Bhadran A, Shah T, Babanyinah GK, Ma Z, Calubaquib EL, Miller JT, Biewer MC, Stefan MC. Effect of aromatic substituents on thermoresponsive functional polycaprolactone micellar carriers for doxorubicin delivery. Front Pharmacol 2024; 15:1356639. [PMID: 38500763 PMCID: PMC10945023 DOI: 10.3389/fphar.2024.1356639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Amphiphilic functional polycaprolactone (PCL) diblock copolymers are excellent candidates for micellar drug delivery. The functional groups on the backbone significantly affect the properties of PCL. A systematic investigation of the effect of aromatic substituents on the self-assembly of γ-functionalized PCLs and the delivery of doxorubicin (DOX) is presented in this work. Three thermoresponsive amphiphilic diblock copolymers with poly(γ-benzyloxy-ε-caprolactone) (PBnCL), poly(γ-phenyl- ε-caprolactone) (PPhCL), poly(γ-(4-ethoxyphenyl)-ε-caprolactone) (PEtOPhCL), respectively, as hydrophobic block and γ-tri(ethylene glycol) functionalized PCL (PME3CL) as hydrophilic block were prepared through ring-opening polymerization (ROP). The thermoresponsivity, thermodynamic stability, micelle size, morphology, DOX-loading, and release profile were determined. The LCST values of amphiphilic diblock copolymers PME3CL-b-PBnCL, PME3CL-b-PPhCL, and PME3CL-b-PEtOPhCL are 74.2°C, 43.3°C, and 37.3°C, respectively. All three copolymers formed spherical micelles in phosphate-buffered saline (PBS, 1×, pH = 7.4) at low concentrations ranging from 8.7 × 10-4 g/L to 8.9 × 10-4 g/L. PME3CL-b-PBnCL micelles showed the highest DOX loading capacity of 3.01 ± 0.18 (wt%) and the lowest drug release, while PME3CL-b-PEtOPhCL micelles exhibited the lowest DOX loading capacity of 1.95 ± 0.05 (wt%) and the highest drug release. Cytotoxicity and cellular uptake of all three micelles were assessed in vitro using MDA-MB-231 breast cancer cells. All three empty micelles did not show significant toxicity to the cells at concentrations high up to 0.5 mg/mL. All three DOX-loaded micelles were uptaken into the cells, and DOX was internalized into the nucleus of the cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael C. Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States
| | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
2
|
Jafari VF, Mossayebi Z, Allison-Logan S, Shabani S, Qiao GG. The Power of Automation in Polymer Chemistry: Precision Synthesis of Multiblock Copolymers with Block Sequence Control. Chemistry 2023; 29:e202301767. [PMID: 37401148 DOI: 10.1002/chem.202301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Machines can revolutionize the field of chemistry and material science, driving the development of new chemistries, increasing productivity, and facilitating reaction scale up. The incorporation of automated systems in the field of polymer chemistry has however proven challenging owing to the demanding reaction conditions, rendering the automation setup complex and costly. There is an imminent need for an automation platform which uses fast and simple polymerization protocols, while providing a high level of control on the structure of macromolecules via precision synthesis. This work combines an oxygen tolerant, room temperature polymerization method with a simple liquid handling robot to automatically prepare precise and high order multiblock copolymers with unprecedented livingness even after many chain extensions. The highest number of blocks synthesized in such a system is reported, demonstrating the capabilities of this automated platform for the rapid synthesis and complex polymer structure formation.
Collapse
Affiliation(s)
- Vianna F Jafari
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zahra Mossayebi
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sadegh Shabani
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Li Z, Zheng Y, Yan J, Yan Y, Peng C, Wang Z, Liu H, Liu Y, Zhou Y, Ding M. Self-Assembly of Poly(Amino Acid)s Mediated by Secondary Conformations. Chembiochem 2023; 24:e202300132. [PMID: 37340829 DOI: 10.1002/cbic.202300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Self-assembly of block copolymers has recently drawn great attention due to its remarkable performance and wide variety of applications in biomedicine, biomaterials, microelectronics, photoelectric materials, catalysts, etc. Poly(amino acid)s (PAAs), formed by introducing synthetic amino acids into copolymer backbones, are able to fold into different secondary conformations when compared with traditional amphiphilic copolymers. Apart from changing the chemical composition and degree of polymerization of copolymers, the self-assembly behaviors of PAAs could be controlled by their secondary conformations, which are more flexible and adjustable for fine structure tailoring. In this article, we summarize the latest findings on the variables that influence secondary conformations, in particular the regulation of order-to-order conformational changes and the approaches used to manage the self-assembly behaviors of PAAs. These strategies include controlling pH, redox reactions, coordination, light, temperature, and so on. Hopefully, we can provide valuable perspectives that will be useful for the future development and use of synthetic PAAs.
Collapse
Affiliation(s)
- Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jingyue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022; 14:pharmaceutics14081733. [PMID: 36015356 PMCID: PMC9412871 DOI: 10.3390/pharmaceutics14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022; 19:1687-1703. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|