1
|
Gao L, Chen X, Liang X, Guo X, Huang X, Chen C, Wan X, Deng R, Wu Q, Wang L, Feng J. A Novel One-Pot Synthesis of Poly(Propylene Carbonate) Containing Cross-Linked Networks by Copolymerization of Carbon Dioxide, Propylene Oxide, Maleic Anhydride, and Furfuryl Glycidyl Ether. Polymers (Basel) 2019; 11:E881. [PMID: 31091817 PMCID: PMC6572252 DOI: 10.3390/polym11050881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022] Open
Abstract
The thermoplastic poly(propylene carbonate) (PPC) containing cross-linked networks was one-pot synthesized by copolymerization of carbon dioxide, propylene oxide (PO), maleic anhydride (MA), and furfuryl glycidyl ether (FGE). The copolymers were characterized by Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements. The thermal and dimensional stability of the copolymers were improved. When the MA and FGE load increased from 1 mol% to 4 mol% of PO, the copolymers contained the gel contents of 11.0%-26.1% and their yields were about double that of the PPC. The 5% weight-loss degradation temperatures (Td,-5%) and the maximum weight-loss degradation temperatures (Td,max) increased from 149.7-271.3 °C and from 282.6-288.6 °C, respectively, corresponding to 217.1 °C and 239.0 °C of PPC. Additionally, the hot-set elongation tests showed that the copolymers exhibited elasticity and dimensional stability with the minimum permanent deformation of 6.5% which was far less than that of PPC of 157.2%, while the tensile strengths were a little lower than that of PPC because of the following two conflicting factors, cross-links and flexibility of the units formed by the introduced third monomers, MA and FGE. In brief, we provide a novel method of one-pot synthesis of PPC containing cross-linked networks. According to this idea, the properties would be more extensively regulated by changing the cross-linkable monomers.
Collapse
Affiliation(s)
- Lijun Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xianggen Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xiangjun Liang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiuzhi Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xianling Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Caifen Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiaodan Wan
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Ruyu Deng
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Qifeng Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jiuying Feng
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Resource and Chemical Engineering Technology Research Center of Western Guangdong Province, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
2
|
Goodwin D, Simerska P, Chang CH, Mansfeld FM, Varamini P, D’Occhio MJ, Toth I. Active immunisation of mice with GnRH lipopeptide vaccine candidates: Importance of T helper or multi-dimer GnRH epitope. Bioorg Med Chem 2014; 22:4848-54. [DOI: 10.1016/j.bmc.2014.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
3
|
Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP. The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 2007; 28:2946-58. [PMID: 17379299 DOI: 10.1016/j.biomaterials.2007.02.034] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 02/22/2007] [Indexed: 12/13/2022]
Abstract
Wear debris from metal on polyethylene joint replacements causes asceptic loosening as a result of an inflammatory reaction of macrophages to micron-sized particles. Metal on metal implants, which generate nanoparticles, have been reintroduced into surgical practise in order to avoid this problem. There is a current concern about possible long-term effects of exposure to metal particles. In this study, the cytotoxic and genotoxic effects of nanoparticles and micron-sized particles of cobalt chrome alloy have been compared using human fibroblasts in tissue culture. Nanoparticles, which caused more free radicals in an acellular environment, induced more DNA damage than micron-sized particles using the alkaline comet assay. They induced more aneuploidy and more cytotoxicity at equivalent volumetric dose. Nanoparticles appeared to disintegrate within the cells faster than microparticles with the creation of electron dense deposits in the cell, which were enriched in cobalt. The mechanism of cell damage appears to be different after exposure to nanoparticles and microparticles. The concept of nanotoxicology is, therefore, an important consideration in the design of future surgical devices.
Collapse
Affiliation(s)
- I Papageorgiou
- Bristol Implant Research Centre, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang Z, Olsen P, Ravikumar VT. A novel universal linker for efficient synthesis of phosphorothioate oligonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:259-69. [PMID: 17454735 DOI: 10.1080/15257770701257277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A versatile and conformationally preorganized universal linker molecule is reported here for efficient synthesis of phosphorothioate oligonucleotides. With respect to nucleoside loaded support, comparable yield and quality based on ion-pair LC-MS are obtained for both deoxy and 2'-O-methoxyethyl modified phosphorothioate oligonucleotides. No 3'-phosphate or phosphorothioate monoester or any modification of universal molecule still attached to oligonucleotide was observed. [structure: see text]
Collapse
Affiliation(s)
- Zhiwei Wang
- Isis Pharmaceuticals, Carlsbad, California 92008. USA
| | | | | |
Collapse
|