1
|
Usovsky M, Gamage VA, Meinhardt CG, Dietz N, Triller M, Basnet P, Gillman JD, Bilyeu KD, Song Q, Dhital B, Nguyen A, Mitchum MG, Scaboo AM. Loss-of-function of an α-SNAP gene confers resistance to soybean cyst nematode. Nat Commun 2023; 14:7629. [PMID: 37993454 PMCID: PMC10665432 DOI: 10.1038/s41467-023-43295-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Plant-parasitic nematodes are one of the most economically impactful pests in agriculture resulting in billions of dollars in realized annual losses worldwide. Soybean cyst nematode (SCN) is the number one biotic constraint on soybean production making it a priority for the discovery, validation and functional characterization of native plant resistance genes and genetic modes of action that can be deployed to improve soybean yield across the globe. Here, we present the discovery and functional characterization of a soybean resistance gene, GmSNAP02. We use unique bi-parental populations to fine-map the precise genomic location, and a combination of whole genome resequencing and gene fragment PCR amplifications to identify and confirm causal haplotypes. Lastly, we validate our candidate gene using CRISPR-Cas9 genome editing and observe a gain of resistance in edited plants. This demonstrates that the GmSNAP02 gene confers a unique mode of resistance to SCN through loss-of-function mutations that implicate GmSNAP02 as a nematode virulence target. We highlight the immediate impact of utilizing GmSNAP02 as a genome-editing-amenable target to diversify nematode resistance in commercially available cultivars.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Vinavi A Gamage
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Clinton G Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Nicholas Dietz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Marissa Triller
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Pawan Basnet
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Jason D Gillman
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Kristin D Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Bishnu Dhital
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Alice Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Mahmood A, Bilyeu KD, Škrabišová M, Biová J, De Meyer EJ, Meinhardt CG, Usovsky M, Song Q, Lorenz AJ, Mitchum MG, Shannon G, Scaboo AM. Cataloging SCN resistance loci in North American public soybean breeding programs. FRONTIERS IN PLANT SCIENCE 2023; 14:1270546. [PMID: 38053759 PMCID: PMC10694258 DOI: 10.3389/fpls.2023.1270546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.
Collapse
Affiliation(s)
- Anser Mahmood
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kristin D. Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, United States
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Elizabeth J. De Meyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Clinton G. Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Aaron J. Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Andrew M. Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Han S, Smith JM, Du Y, Bent AF. Soybean transporter AAT Rhg1 abundance increases along the nematode migration path and impacts vesiculation and ROS. PLANT PHYSIOLOGY 2023; 192:133-153. [PMID: 36805759 PMCID: PMC10152651 DOI: 10.1093/plphys/kiad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Rhg1 (Resistance to Heterodera glycines 1) mediates soybean (Glycine max) resistance to soybean cyst nematode (SCN; H. glycines). Rhg1 is a 4-gene, ∼30-kb block that exhibits copy number variation, and the common PI 88788-type rhg1-b haplotype carries 9 to 10 tandem Rhg1 repeats. Glyma.18G022400 (Rhg1-GmAAT), 1 of 3 resistance-conferring genes at the complex Rhg1 locus, encodes the putative amino acid transporter AATRhg1 whose mode of action is largely unknown. We discovered that AATRhg1 protein abundance increases 7- to 15-fold throughout root cells along the migration path of SCN. These root cells develop an increased abundance of vesicles and large vesicle-like bodies (VLB) as well as multivesicular and paramural bodies. AATRhg1 protein is often present in these structures. AATRhg1 abundance remained low in syncytia (plant cells reprogrammed by SCN for feeding), unlike the Rhg1 α-SNAP protein, whose abundance has previously been shown to increase in syncytia. In Nicotiana benthamiana, if soybean AATRhg1 was present, oxidative stress promoted the formation of large VLB, many of which contained AATRhg1. AATRhg1 interacted with the soybean NADPH oxidase GmRBOHG, the ortholog of Arabidopsis thaliana RBOHD previously found to exhibit upregulated expression upon SCN infection. AATRhg1 stimulated reactive oxygen species (ROS) generation when AATRhg1 and GmRBOHG were co-expressed. These findings suggest that AATRhg1 contributes to SCN resistance along the migration path as SCN invades the plant and does so, at least in part, by increasing ROS production. In light of previous findings about α-SNAPRhg1, this study also shows that different Rhg1 resistance proteins function via at least 2 spatially and temporally separate modes of action.
Collapse
Affiliation(s)
- Shaojie Han
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 311121, China
| | - John M Smith
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Yulin Du
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
5
|
Basnet P, Meinhardt CG, Usovsky M, Gillman JD, Joshi T, Song Q, Diers B, Mitchum MG, Scaboo AM. Epistatic interaction between Rhg1-a and Rhg2 in PI 90763 confers resistance to virulent soybean cyst nematode populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2025-2039. [PMID: 35381870 PMCID: PMC9205835 DOI: 10.1007/s00122-022-04091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/25/2022] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE An epistatic interaction between SCN resistance loci rhg1-a and rhg2 in PI 90763 imparts resistance against virulent SCN populations which can be employed to diversify SCN resistance in soybean cultivars. With more than 95% of the $46.1B soybean market dominated by a single type of genetic resistance, breeding for soybean cyst nematode (SCN)-resistant soybean that can effectively combat the widespread increase in virulent SCN populations presents a significant challenge. Rhg genes (for Resistance to Heterodera glycines) play a key role in resistance to SCN; however, their deployment beyond the use of the rhg1-b allele has been limited. In this study, quantitative trait loci (QTL) were mapped using PI 90763 through two biparental F3:4 recombinant inbred line (RIL) populations segregating for rhg1-a and rhg1-b alleles against a SCN HG type 1.2.5.7 (Race 2) population. QTL located on chromosome 18 (rhg1-a) and chromosome 11 (rhg2) were determined to confer SCN resistance in PI 90763. The rhg2 gene was fine-mapped to a 169-Kbp region pinpointing GmSNAP11 as the strongest candidate gene. We demonstrated a unique epistatic interaction between rhg1-a and rhg2 loci that not only confers resistance to multiple virulent SCN populations. Further, we showed that pyramiding rhg2 with the conventional mode of resistance, rhg1-b, is ineffective against these virulent SCN populations. This highlights the importance of pyramiding rhg1-a and rhg2 to maximize the impact of gene pyramiding strategies toward management of SCN populations virulent on rhg1-b sources of resistance. Our results lay the foundation for the next generation of soybean resistance breeding to combat the number one pathogen of soybean.
Collapse
Affiliation(s)
- Pawan Basnet
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Clinton G Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Trupti Joshi
- Department of Health Management and Informatics, MUIDSI, and Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
6
|
Jobson E, Roberts R. Genomic structural variation in tomato and its role in plant immunity. MOLECULAR HORTICULTURE 2022; 2:7. [PMID: 37789472 PMCID: PMC10515242 DOI: 10.1186/s43897-022-00029-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 10/05/2023]
Abstract
It is well known that large genomic variations can greatly impact the phenotype of an organism. Structural Variants (SVs) encompass any genomic variation larger than 30 base pairs, and include changes caused by deletions, inversions, duplications, transversions, and other genome modifications. Due to their size and complex nature, until recently, it has been difficult to truly capture these variations. Recent advances in sequencing technology and computational analyses now permit more extensive studies of SVs in plant genomes. In tomato, advances in sequencing technology have allowed researchers to sequence hundreds of genomes from tomatoes, and tomato relatives. These studies have identified SVs related to fruit size and flavor, as well as plant disease response, resistance/susceptibility, and the ability of plants to detect pathogens (immunity). In this review, we discuss the implications for genomic structural variation in plants with a focus on its role in tomato immunity. We also discuss how advances in sequencing technology have led to new discoveries of SVs in more complex genomes, the current evidence for the role of SVs in biotic and abiotic stress responses, and the outlook for genetic modification of SVs to advance plant breeding objectives.
Collapse
Affiliation(s)
- Emma Jobson
- Montana State University Extension, Montana State University, Bozeman, MT, 59717, United States
| | - Robyn Roberts
- Agricultural Biology Department, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
7
|
Grunwald DJ, Zapotocny RW, Ozer S, Diers BW, Bent AF. Detection of rare nematode resistance Rhg1 haplotypes in Glycine soja and a novel Rhg1 α-SNAP. THE PLANT GENOME 2022; 15:e20152. [PMID: 34716668 DOI: 10.1002/tpg2.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This study pursued the hypothesis that wild plant germplasm accessions carrying alleles of interest can be identified using available single nucleotide polymorphism (SNP) genotypes for particular alleles of other (unlinked) genes that contribute to the trait of interest. The soybean cyst nematode (SCN, Heterodera glycines [HG]) resistance locus Rhg1 is widely used in farmed soybean [Glycine max (L.) Merr.]. The two known resistance-conferring haplotypes, rhg1-a and rhg1-b, typically contain three or seven to 10 tandemly duplicated Rhg1 segments, respectively. Each Rhg1 repeat carries four genes, including Glyma.18G022500, which encodes unusual isoforms of the vesicle-trafficking chaperone α-SNAP. Using SoySNP50K data for NSFRAN07 allele presence, we discovered a new Rhg1 haplotype, rhg1-ds, in six accessions of wild soybean, Glycine soja Siebold & Zucc. (0.5% of the ∼1,100 G. soja accessions in the USDA collection). The α-SNAP encoded by rhg1-ds is unique at an important site of amino acid variation and shares with the rhg1-a and rhg1-b α-SNAP proteins the traits of cytotoxicity and altered N-ethylmaleimide sensitive factor (NSF) protein interaction. Copy number assays indicate three repeats of rhg1-ds. G. soja PI 507613 and PI 507623 exhibit resistance to HG type 2.5.7 SCN populations, in part because of contributions from other loci. In a segregating F2 population, rhg1-b and rhg1-ds made statistically indistinguishable contributions to resistance to a partially virulent HG type 2.5.7 SCN population. Hence, the unusual multigene copy number variation Rhg1 haplotype was present but rare in ancestral G. soja and was present in accessions that offer multiple traits for SCN resistance breeding. The accessions were initially identified for study based on an unlinked SNP.
Collapse
Affiliation(s)
- Derrick J Grunwald
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ryan W Zapotocny
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Seda Ozer
- Dep. of Crop Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brian W Diers
- Dep. of Crop Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew F Bent
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Nissan N, Mimee B, Cober ER, Golshani A, Smith M, Samanfar B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. BIOLOGY 2022; 11:211. [PMID: 35205078 PMCID: PMC8869295 DOI: 10.3390/biology11020211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
Plant pathogens greatly impact food security of the ever-growing human population. Breeding resistant crops is one of the most sustainable strategies to overcome the negative effects of these biotic stressors. In order to efficiently breed for resistant plants, the specific plant-pathogen interactions should be understood. Soybean is a short-day legume that is a staple in human food and animal feed due to its high nutritional content. Soybean cyst nematode (SCN) is a major soybean stressor infecting soybean worldwide including in China, Brazil, Argentina, USA and Canada. There are many Quantitative Trait Loci (QTLs) conferring resistance to SCN that have been identified; however, only two are widely used: rhg1 and Rhg4. Overuse of cultivars containing these QTLs/genes can lead to SCN resistance breakdown, necessitating the use of additional strategies. In this manuscript, a literature review is conducted on research related to soybean resistance to SCN. The main goal is to provide a current understanding of the mechanisms of SCN resistance and list the areas of research that could be further explored.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Myron Smith
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| |
Collapse
|
9
|
Khanna K, Ohri P, Bhardwaj R. Genetic toolbox and regulatory circuits of plant-nematode associations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:137-146. [PMID: 34038810 DOI: 10.1016/j.plaphy.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Plant-nematode associations are the most imperative area of study that forms the basis to understand their regulatory networks and coordinated functional aspects. Nematodes are highly parasitic organisms known so far, to cause relentless damage towards agricultural crops on a global scale. They pierce the roots of host plants and form neo-plastic feeding structures to extract out resources for their functional development. Moreover, they undergo re-differentiation within plant cells to form giant multi-nucleate feeding structures or syncytium. All these processes are facilitated by numerous transcriptomic, proteomic, metabolomic and epigenetic modifications, that regulate different biological attractions among plants and nematodes. Nevertheless, these mechanisms are quite remarkable and have been explored in the present review. Here, we have shed light on genomic as well as genetic approaches to acquire an effective understanding regarding plant-nematode associations. Transcriptomics have revealed an extensive network to unravel feeding mechanism of nematodes through gene-expression programming of target genes. Also, the regulatory circuits of epigenetic alterations through DNA-methylation, non-coding RNAs and histone modifications very well explain epigenetic profiling within plants. Since decades, research have observed many intricacies to elucidate the dynamic nature of epigenetic modulations in plant-nematode attractions. By this review, we have highlighted the functional aspects of small RNAs in inducing plant-nematode parasitism along with the putative role of miRNAs. These RNAs act as chief genetic elements to mediate the expressional changes in plants through post-transcriptional silencing of various effector proteins as well as transcriptional factors. A pragmatic role of miRNAs in modulating gene expression in nematode infection and feeding site development have also been reviewed. Hence, they have been considered master regulators for functional reprogramming the expression during establishment of feeding sites. We have also encapsulated the advancement of genome-broadened DNA-methylation and untangled the nematode mediated dynamic alterations within plant methylome along with assessing transcriptional activities of various genes and transposons. In particular, we have highlighted the role of effector proteins in stimulating epigenetic changes. Finally, we have emerged towards a molecular-based core understanding about plant-nematode associations.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
10
|
Yano M, Inoue T, Nakata R, Teraishi M, Yoshinaga N, Ono H, Okumoto Y, Mori N. Evaluation of antixenosis in soybean against Spodoptera litura by dual-choice assay aided by a statistical analysis model: Discovery of a novel antixenosis in Peking. JOURNAL OF PESTICIDE SCIENCE 2021; 46:182-188. [PMID: 34135679 PMCID: PMC8175227 DOI: 10.1584/jpestics.d21-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The method for evaluating soybean (Glycine max) antixenosis against the common cutworm (Spodoptera litura) was developed based on a dual-choice assay aided by a statistical analysis model. This model was constructed from the results of a dual-choice assay in which Enrei, a soybean cultivar susceptible to S. litura, was used as both a standard and a test leaf disc for 2nd-5th instar larvae. The statistical criterion created by this model enabled the evaluation of the presence of antixenosis. This method was applied to four soybean varieties, including Tamahomare (susceptible), Himeshirazu (resistant), IAC100 (resistant), and Peking (unknown), as well as Enrei. Subsequently, the degrees of antixenosis were also compared by F-test, followed by maximum likelihood estimation (MLE). According to the results, the antixenosis of Tamahomare, Himeshirazu, and IAC100 was statistically reevaluated and Peking exhibited a novel antixenosis, which was stronger for 3rd-5th instar larvae than for 2nd instar.
Collapse
Affiliation(s)
- Mariko Yano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Takato Inoue
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Ryu Nakata
- Department of Bioscience and Biotechnology, Kyoto University of Advanced Science, 1–1 Nanjo Otani, Sogabe, Kameoka, Kyoto 621–8555, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| |
Collapse
|
11
|
Nissan N, Cober ER, Sadowski M, Charette M, Golshani A, Samanfar B. Identifying new variation at the J locus, previously identified as e6, in long juvenile 'Paranagoiana' soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1007-1014. [PMID: 33386860 PMCID: PMC7973924 DOI: 10.1007/s00122-020-03746-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/05/2020] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE A previously identified soybean maturity locus, E6, is discovered to be J, with the long juvenile allele in Paranagoiana now deemed j-x. Soybean grown at latitudes of ~20° or lower can produce lower grain yields due to the short days. This limitation can be overcome by using the long juvenile trait (LJ) which delays flowering under short day conditions. Two LJ loci have been mapped to the same location on Gm04, J and E6. The objective of this research was to investigate the e6 allele in 'Paranagoiana' and determine if E6 and J are the same locus or linked loci. KASP markers showed that e6 lines did not have the j-1 allele of LJ PI 159925. A population fixed for E1 but segregating for E6, with e6 introgressed from Paranagoiana, showed single gene control for flowering and maturity under short days. Sequencing Glyma.04G050200, the J gene, with long amplification Taq found that the e6 line 'Paranagoiana' contains a Ty1-copia retrotransposon of ~10,000 bp, inserted within exon 4. PCR amplification of the cDNA of Glyma.04G050200 also showed differences between the mRNA sequences (presence of insertion in j-x). Hence, we conclude that the loci E6 and J are one locus and deem this new variation found in Paranagoiana as j-x.
Collapse
Affiliation(s)
- Nour Nissan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Elroy R Cober
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Michael Sadowski
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Martin Charette
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Bahram Samanfar
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Zheng Q, Putker V, Goverse A. Molecular and Cellular Mechanisms Involved in Host-Specific Resistance to Cyst Nematodes in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:641582. [PMID: 33767723 PMCID: PMC7986850 DOI: 10.3389/fpls.2021.641582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 05/17/2023]
Abstract
Cyst nematodes are able to infect a wide range of crop species and are regarded as a major threat in crop production. In response to invasion of cyst nematodes, plants activate their innate immune system to defend themselves by conferring basal and host-specific defense responses depending on the plant genotype. Basal defense is dependent on the detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), while host-specific defense mainly relies on the activation of canonical and non-canonical resistance (R) genes or quantitative trait loci (QTL). Currently, application of R genes and QTLs in crop species is a major approach to control cyst nematode in crop cultivation. However, emerging virulent cyst nematode field populations are threatening crop production due to host genetic selection by the application of a limited set of resistance genes in current crop cultivars. To counteract this problem, increased knowledge about the mechanisms involved in host-specific resistance mediated by R genes and QTLs to cyst nematodes is indispensable to improve their efficient and sustainable use in field crops. Despite the identification of an increasing number of resistance traits to cyst nematodes in various crops, the underlying genes and defense mechanisms are often unknown. In the last decade, indebt studies on the functioning of a number of cyst nematode R genes and QTLs have revealed novel insights in how plants respond to cyst nematode infection by the activation of host-specific defense responses. This review presents current knowledge of molecular and cellular mechanisms involved in the recognition of cyst nematodes, the activation of defense signaling and resistance response types mediated by R genes or QTLs. Finally, future directions for research are proposed to develop management strategies to better control cyst nematodes in crop cultivation.
Collapse
Affiliation(s)
- Qi Zheng
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Vera Putker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
13
|
Abstract
Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant-nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA;
| |
Collapse
|
14
|
Lakhssassi N, Piya S, Knizia D, El Baze A, Cullen MA, Meksem J, Lakhssassi A, Hewezi T, Meksem K. Mutations at the Serine Hydroxymethyltransferase Impact its Interaction with a Soluble NSF Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines (Basel) 2020; 8:vaccines8030349. [PMID: 32629961 PMCID: PMC7563484 DOI: 10.3390/vaccines8030349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Resistance to soybean cyst nematodes (SCN) in “Peking-type” resistance is bigenic, requiring Rhg4-a and rhg1-a. Rhg4-a encodes a serine hydroxymethyltransferase (GmSHMT08) and rhg1-a encodes a soluble NSF attachment protein (GmSNAP18). Recently, it has been shown that a pathogenesis-related protein, GmPR08-Bet VI, potentiates the interaction between GmSHMT08 and GmSNAP18. Mutational analysis using spontaneously occurring and ethyl methanesulfonate (EMS)-induced mutations was carried out to increase our knowledge of the interacting GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex. Mutations affecting the GmSHMT08 protein structure (dimerization and tetramerization) and interaction sites with GmSNAP18 and GmPR08-Bet VI proteins were found to impact the multi-protein complex. Interestingly, mutations affecting the PLP/THF substrate binding and catalysis did not affect the multi-protein complex, although they resulted in increased susceptibility to SCN. Most importantly, GmSHMT08 and GmSNAP18 from PI88788 were shown to interact within the cell, being potentiated in the presence of GmPR08-Bet VI. In addition, we have shown the presence of incompatibility between the GmSNAP18 (rhg1-b) of PI88788 and GmSHMT08 (Rhg4-a) from Peking. Components of the reactive oxygen species (ROS) pathway were shown to be induced in the SCN incompatible reaction and were mapped to QTLs for resistance to SCN using different mapping populations.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Mallory A. Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, 54000 Nancy, France;
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
- Correspondence: ; Tel.: +1-618-453-3103
| |
Collapse
|
15
|
Wang C, Ulloa M, Nichols RL, Roberts PA. Sequence Composition of Bacterial Chromosome Clones in a Transgressive Root-Knot Nematode Resistance Chromosome Region in Tetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:574486. [PMID: 33381129 PMCID: PMC7767830 DOI: 10.3389/fpls.2020.574486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 05/08/2023]
Abstract
Plants evolve innate immunity including resistance genes to defend against pest and pathogen attack. Our previous studies in cotton (Gossypium spp.) revealed that one telomeric segment on chromosome (Chr) 11 in G. hirsutum cv. Acala NemX (rkn1 locus) contributed to transgressive resistance to the plant parasitic nematode Meloidogyne incognita, but the highly homologous segment on homoeologous Chr 21 had no resistance contribution. To better understand the resistance mechanism, a bacterial chromosome (BAC) library of Acala N901 (Acala NemX resistance source) was used to select, sequence, and analyze BAC clones associated with SSR markers in the complex rkn1 resistance region. Sequence alignment with the susceptible G. hirsutum cv. TM-1 genome indicated that 23 BACs mapped to TM-1-Chr11 and 18 BACs mapped to TM-1-Chr 21. Genetic and physical mapping confirmed less BAC sequence (53-84%) mapped with the TM-1 genome in the rkn1 region on Chr 11 than to the homologous region (>89%) on Chr 21. A 3.1-cM genetic distance between the rkn1 flanking markers CIR316 and CIR069 was mapped in a Pima S-7 × Acala NemX RIL population with a physical distance ∼1 Mbp in TM-1. NCBI Blast and Gene annotation indicated that both Chr 11 and Chr 21 harbor resistance gene-rich cluster regions, but more multiple homologous copies of Resistance (R) proteins and of adjacent transposable elements (TE) are present within Chr 11 than within Chr 21. (CC)-NB-LRR type R proteins were found in the rkn1 region close to CIR316, and (TIR)-NB-LRR type R proteins were identified in another resistance rich region 10 cM from CIR 316 (∼3.1 Mbp in the TM-1 genome). The identified unique insertion/deletion in NB-ARC domain, different copies of LRR domain, multiple copies or duplication of R proteins, adjacent protein kinases, or TE in the rkn1 region on Chr 11 might be major factors contributing to complex recombination and transgressive resistance.
Collapse
Affiliation(s)
- Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Mauricio Ulloa
- United States Department of Agriculture-Agricultural Research Service, Plains Area, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | | | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Philip A. Roberts,
| |
Collapse
|