1
|
Karki M, Chu C, Anderson K, Nandety RS, Fiedler JD, Schachterle J, Bruggeman RS, Liu Z, Yang S. Genome-Wide Association Study of Host Resistance to Hessian Fly in Barley. PHYTOPATHOLOGY 2024; 114:752-759. [PMID: 37913750 DOI: 10.1094/phyto-06-23-0192-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Hessian fly (HF), Mayetiola destructor (Diptera: Cecidomyiidae), is one of the most devastating insect pests of cereals including wheat, barley, and rye. Although wheat is the preferred host for HF, this continuously evolving pest has been emerging as a threat to barley production. However, characterization and identification of genetic resistance to HF has not been conducted in barley. In the present study, we used a genome-wide association study (GWAS) to identify barley resistance loci to HF using a geographically diverse set of 234 barley accessions. The results showed that around 90% of barley lines were highly susceptible, indicating a significant vulnerability to HF in barley, and a total of 29 accessions were resistant, serving as potential resistance resources. GWAS with a mixed linear model revealed two marker-trait associations, both on chromosome 4H. The resistance loci and associated markers will facilitate barley improvement and development for breeders. In addition, our results are fundamental for genetic studies to understand the HF resistance mechanism in barley.
Collapse
Affiliation(s)
- Manila Karki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Chenggen Chu
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
| | - Kirk Anderson
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jeffrey Schachterle
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| |
Collapse
|
2
|
Ahmad A, von Dohlen C, Ren Z. A chromosome-level genome assembly of the Rhus gall aphid Schlechtendalia chinensis provides insight into the endogenization of Parvovirus-like DNA sequences. BMC Genomics 2024; 25:16. [PMID: 38166596 PMCID: PMC10759679 DOI: 10.1186/s12864-023-09916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
The Rhus gall aphid, Schlechtendalia chinensis, feeds on its primary host plant Rhus chinensis to induce galls, which have economic importance in medicines and the food industry. Rhus gall aphids have a unique life cycle and are economically beneficial but there is huge gap in genomic information about this group of aphids. Schlechtendalia chinensis induces rich-tannin galls on its host plant and is emerging as a model organism for both commercial applications and applied research in the context of gall production by insects. Here, we generated a high-quality chromosome-level assembly for the S. chinensis genome, enabling the comparison between S. chinensis and non-galling aphids. The final genome assembly is 344.59 Mb with 91.71% of the assembled sequences anchored into 13 chromosomes. We predicted 15,013 genes, of which 14,582 (97.13%) coding genes were annotated, and 99% of the predicted genes were anchored to the 13 chromosomes. This assembly reveals the endogenization of parvovirus-related DNA sequences (PRDs) in the S. chinensis genome, which could play a role in environmental adaptations. We demonstrated the characterization and classification of cytochrome P450s in the genome assembly, which are functionally crucial for sap-feeding insects and have roles in detoxification and insecticide resistance. This genome assembly also revealed the whole genome duplication events in S. chinensis, which can be considered in comparative evolutionary analysis. Our work represents a reference genome for gall-forming aphids that could be used for comparative genomic studies between galling and non-galling aphids and provides the first insight into the endogenization of PRDs in the genome of galling aphids. It also provides novel genetic information for future research on gall-formation and insect-plant interactions.
Collapse
Affiliation(s)
- Aftab Ahmad
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Carol von Dohlen
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Subramanyam S, Bockelman HE, Sardesai N. Untapped Sources of Dual Resistance to Hessian Fly and Greenbug in Synthetic Hexaploid Wheats. PLANTS (BASEL, SWITZERLAND) 2023; 12:3883. [PMID: 38005780 PMCID: PMC10674412 DOI: 10.3390/plants12223883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
The Hessian fly (Hf) and greenbugs (Gb) are major pests of wheat, causing severe economic losses globally. Deploying resistant wheat is the most effective strategy for managing these destructive insects. However, the resistance is not effective against all Hf or Gb biotypes and can impose selection pressure on insects, resulting in the development of virulent biotypes. These challenges must be met through the discovery of new and novel sources of resistance to these pests. Synthetic Hexaploid Wheat (SHW)-developed cultivars are a rich source of resistance against a diverse array of pathogens and pests. In this study, 80 SHW lines were evaluated for their resistance to Hf and Gb under controlled environmental conditions. Of these, a total of 36 SHW lines showed resistance independently to Hf biotype L and Gb biotype E, while 27 lines showed combined resistance to both Hf and Gb. Further, a subset of 10 SHW lines showed resistance to additional Hf biotypes, Great Plains and vH13. The identification of SHW lines resistant to multiple insects and biotypes offers an invaluable resource to breeders who are looking to stack resistance traits to develop elite cultivars as a strategy to alleviate economic impacts upon global wheat production.
Collapse
Affiliation(s)
- Subhashree Subramanyam
- Crop Production and Pest Control Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Harold E. Bockelman
- National Small Grains Collection, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Aberdeen, ID 83210, USA
| | | |
Collapse
|
4
|
Flay C, Tahir J, Hilario E, Fraser L, Stannard K, Symonds V, Datson P. Genomic architecture of resistance to latania scale (H. lataniae) in kiwifruit (A. chinensis var. chinensis). BMC PLANT BIOLOGY 2023; 23:530. [PMID: 37907872 PMCID: PMC10617205 DOI: 10.1186/s12870-023-04504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Latania scale (Hemiberlesia lataniae Signoret) is an armoured scale insect known to cause damage to kiwifruit plants and fruit, which ultimately reduces crop values and creates post-harvest export and quarantine issues. Resistance to H. lataniae does exist in some commercial cultivars of kiwifruit. However, some of the commercial cultivars bred in New Zealand have not inherited alleles for resistance to H. lataniae carried by their parents. To elucidate the architecture of resistance in the parents and develop molecular markers to assist breeding, these experiments analysed the inheritance of resistance to H. lataniae from families related to commercial cultivars. RESULTS The first experiment identified a 15.97 Mb genomic region of interest for resistance to H. lataniae in rtGBS data of 3.23 to 19.20 Mb on chromosome 10. A larger population was then QTL mapped, which confirmed the region of interest as the sole locus contributing to H. lataniae resistance. inDel markers mapping the region of low recombination under the QTL peak further narrowed the region associated with H. lataniae resistance to a 5.73 Mb region. CONCLUSIONS The kiwifruit populations and genomic methods used in this study identify the same non-recombinant region of chromosome 10 which confers resistance of A. chinensis var. chinensis to H. lataniae. The markers developed to target the H. lataniae resistance loci will reduce the amount of costly and time-consuming phenotyping required for breeding H. lataniae scale resistance into new kiwifruit cultivars.
Collapse
Affiliation(s)
- Casey Flay
- Massey University, Palmerston North, New Zealand.
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Lena Fraser
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Kate Stannard
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | - Paul Datson
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Kiwifruit Breeding Centre, Te Puke, New Zealand
| |
Collapse
|
5
|
Liu L, Yan W, Liu B. Transcriptome sequencing of Cocos nucifera leaves in response to Rhynchophorus ferrugineus infestation. Front Genet 2023; 14:1115392. [PMID: 36824438 PMCID: PMC9942928 DOI: 10.3389/fgene.2023.1115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Red palm weevil (RPW, Rhynchophorus ferrugineus) is an invasive pest of palms. In China, coconut (Cocos nucifera) production is being significantly affected by the RPW attack. To develop a long-term RPW control strategy, host-plant resistance is the most sustainable option. In this regard, the availability of transcriptome sequencing data from RPW-infected coconut plants can be highly useful. Therefore, the present study assessed coconut leaf physiological responses and transcriptional changes after different days of RPW attack i.e., 5, 10, 15, 20, and 25 days after infestation (DAI). A comparison of physiological data indicated that populations with the higher number of RPW insects i.e., population C (15 males +21 females) and D (20 males +28 females) triggered higher antioxidant enzyme activities. We used this data to study the transcriptomic responses on 5 and 20 DAI. Of the 38,432 detected transcripts, 3,984, 1,981, 3,925, and 2,257 were differentially expressed in CK (control/no RPW)_vs._C (5 DAI), CK_vs._D (5 DAI), CK_vs._C (20 DAI), and CK_vs._D (20 DAI), respectively. These transcripts were enriched in plant-pathogen interaction, phenylpropanoid/flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism, plant hormone signal transduction, mitogen-activated protein kinase, and reactive oxygen scavenging pathway. We discuss these results and present several candidate genes to be manipulated for developing a sustainable strategy to control RPW attack regarding host-plant resistance. Furthermore, these findings provide a basis for developing effective early and late RPW attack detection strategies.
Collapse
Affiliation(s)
- Li Liu
- *Correspondence: Li Liu, ; Wei Yan,
| | - Wei Yan
- *Correspondence: Li Liu, ; Wei Yan,
| | - Bo Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
6
|
Winn ZJ, Acharya R, Merrill K, Lyerly J, Brown-Guedira G, Cambron S, Harrison SH, Reisig D, Murphy JP. Mapping of a novel major effect Hessian fly field partial-resistance locus in southern soft red winter wheat line LA03136E71. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3911-3923. [PMID: 34374831 DOI: 10.1007/s00122-021-03936-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Hessian fly resistance has centralized around resistance loci that are biotype specific. We show that field resistance is evident and controlled by a single locus on chromosome 7D. Hessian flies (Mayetiola destructor Say) infest and feed upon wheat (Triticum aestivum L) resulting in significant yield loss. Genetically resistant cultivars are the most effective method of Hessian fly management. Wheat breeders in the southern USA have observed cultivars exhibiting a "field resistance" to Hessian fly that is not detectable by greenhouse assay. The resistant breeding line "LA03136E71" and susceptible cultivar "Shirley" were crossed to develop a population of 200 random F4:5 lines using single seed descent. The population was evaluated in a total of five locations in North Carolina during the 2019, 2020, and 2021 seasons. A subsample of each plot was evaluated for the total number of tillers, number of infested tillers, and total number of larvae/pupae. From these data, the percent infested tillers, number of larvae/pupae per tiller, and the number of larvae/pupae per infested tiller were estimated. In all within and across environment combinations for all traits recorded, the genotype effect was significant (p < 0.05). Interval mapping identified a single large effect QTL distally on the short arm of chromosome 7D for all environment-trait combinations. This locus was identified on a chromosome where no other Hessian fly resistance/tolerance QTL has been previously identified. This novel Hessian fly partial-resistance QTL is termed QHft.nc-7D. Fine mapping must be conducted in this region to narrow down the causal agents responsible for this trait, and investigation into the mode of action is highly suggested.
Collapse
Affiliation(s)
- Z J Winn
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.
| | - R Acharya
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - K Merrill
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - J Lyerly
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - G Brown-Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
- Eastern Regional Small Grains Genotyping Laboratory, USDA-ARS, Raleigh, NC, USA
| | - S Cambron
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, USA
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - S H Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - J P Murphy
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Naalden D, van Kleeff PJM, Dangol S, Mastop M, Corkill R, Hogenhout SA, Kant MR, Schuurink RC. Spotlight on the Roles of Whitefly Effectors in Insect-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:661141. [PMID: 34276723 PMCID: PMC8283192 DOI: 10.3389/fpls.2021.661141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paula J. M. van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca Corkill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C. Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|