1
|
Lazaridi E, Kapazoglou A, Gerakari M, Kleftogianni K, Passa K, Sarri E, Papasotiropoulos V, Tani E, Bebeli PJ. Crop Landraces and Indigenous Varieties: A Valuable Source of Genes for Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:758. [PMID: 38592762 PMCID: PMC10975389 DOI: 10.3390/plants13060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Landraces and indigenous varieties comprise valuable sources of crop species diversity. Their utilization in plant breeding may lead to increased yield and enhanced quality traits, as well as resilience to various abiotic and biotic stresses. Recently, new approaches based on the rapid advancement of genomic technologies such as deciphering of pangenomes, multi-omics tools, marker-assisted selection (MAS), genome-wide association studies (GWAS), and CRISPR/Cas9 gene editing greatly facilitated the exploitation of landraces in modern plant breeding. In this paper, we present a comprehensive overview of the implementation of new genomic technologies and highlight their importance in pinpointing the genetic basis of desirable traits in landraces and indigenous varieties of annual, perennial herbaceous, and woody crop species cultivated in the Mediterranean region. The need for further employment of advanced -omic technologies to unravel the full potential of landraces and indigenous varieties underutilized genetic diversity is also indicated. Ultimately, the large amount of genomic data emerging from the investigation of landraces and indigenous varieties reveals their potential as a source of valuable genes and traits for breeding. The role of landraces and indigenous varieties in mitigating the ongoing risks posed by climate change in agriculture and food security is also highlighted.
Collapse
Affiliation(s)
- Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Kondylia Passa
- Department of Agriculture, University of Patras, Nea Ktiria, 30200 Messolonghi, Greece;
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Vasileios Papasotiropoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| |
Collapse
|
2
|
Zhao B, Liu Z, Zhu C, Zhang Z, Shi W, Lu Q, Sun J. Saline-Alkaline Stress Resistance of Cabernet Sauvignon Grapes Grafted on Different Rootstocks and Rootstock Combinations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2881. [PMID: 37571034 PMCID: PMC10421111 DOI: 10.3390/plants12152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Grafting the wine grape variety Cabernet Sauvignon onto salinity-tolerant rootstocks can improve salinity tolerance and grape yields in regions with high salinity soils. In this experiment, the effects of different rootstocks and rootstock combinations on the saline-alkaline stress (modified Hoagland nutrient solution + 50 mmol L-1 (NaCl + NaHCO3)) of Cabernet Sauvignon were studied. Correlation and principal component analyses were conducted on several physiological indicators of saline-alkaline stress. Salinity limited biomass accumulation, induced damage to the plant membrane, reduced the chlorophyll content and photosynthetic capacity of plants, and increased the content of malondialdehyde, sodium (Na+)/potassium (K+) ratio, and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase). Significant differences in several indicators were observed among the experimental groups. The results indicate that the saline-alkaline tolerance of Cabernet Sauvignon after grafting was the same as that of the rootstock, indicating that the increased resistance of Cabernet Sauvignon grapes to saline-alkaline stress stems from the transferability of the saline-alkaline stress resistance of the rootstock to the scion.
Collapse
Affiliation(s)
- Baolong Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhiyu Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Chunmei Zhu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhijun Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Wenchao Shi
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Qianjun Lu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Junli Sun
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| |
Collapse
|
3
|
Harris ZN, Pratt JE, Kovacs LG, Klein LL, Kwasniewski MT, Londo JP, Wu AS, Miller AJ. Grapevine scion gene expression is driven by rootstock and environment interaction. BMC PLANT BIOLOGY 2023; 23:211. [PMID: 37085756 PMCID: PMC10122299 DOI: 10.1186/s12870-023-04223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Grafting is a horticultural practice used widely across woody perennial crop species to fuse together the root and shoot system of two distinct genotypes, the rootstock and the scion, combining beneficial traits from both. In grapevine, grafting is used in nearly 80% of all commercial vines to optimize fruit quality, regulate vine vigor, and enhance biotic and abiotic stress-tolerance. Rootstocks have been shown to modulate elemental composition, metabolomic profiles, and the shape of leaves in the scion, among other traits. However, it is currently unclear how rootstock genotypes influence shoot system gene expression as previous work has reported complex and often contradictory findings. RESULTS In the present study, we examine the influence of grafting on scion gene expression in leaves and reproductive tissues of grapevines growing under field conditions for three years. We show that the influence from the rootstock genotype is highly tissue and time dependent, manifesting only in leaves, primarily during a single year of our three-year study. Further, the degree of rootstock influence on scion gene expression is driven by interactions with the local environment. CONCLUSIONS Our results demonstrate that the role of rootstock genotype in modulating scion gene expression is not a consistent, unchanging effect, but rather an effect that varies over time in relation to local environmental conditions.
Collapse
Affiliation(s)
- Zachary N Harris
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103-2010, USA.
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132-2918, USA.
| | - Julia E Pratt
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103-2010, USA
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132-2918, USA
| | - Laszlo G Kovacs
- Department of Biology, Missouri State University, 901 S. National Avenue, Springfield, MO, 65897, USA
| | - Laura L Klein
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103-2010, USA
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132-2918, USA
| | - Misha T Kwasniewski
- Department of Food Science, Pennsylvania State University, 326 Rodney A. Erickson Food Science Building, University Park, PA, 16802, USA
| | - Jason P Londo
- School of Integrative Plant Science, Horticulture Section, Cornell AgriTech, 635 W. North Street, Geneva, NY, 14456, USA
| | - Angela S Wu
- Department of Computer Science, Saint Louis University, 220 N. Grand Blvd, St. Louis, MO, 63103-2010, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103-2010, USA.
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132-2918, USA.
| |
Collapse
|
4
|
Bianchi D, Ricciardi V, Pozzoli C, Grossi D, Caramanico L, Pindo M, Stefani E, Cestaro A, Brancadoro L, De Lorenzis G. Physiological and Transcriptomic Evaluation of Drought Effect on Own-Rooted and Grafted Grapevine Rootstock (1103P and 101-14MGt). PLANTS (BASEL, SWITZERLAND) 2023; 12:1080. [PMID: 36903939 PMCID: PMC10005690 DOI: 10.3390/plants12051080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, the responses of genotypes to drought were evaluated on 1103P and 101-14MGt plants, own-rooted and grafted with Cabernet Sauvignon, in three different water deficit conditions (80, 50, and 20% soil water content, SWC). Gas exchange parameters, stem water potential, root and leaf ABA content, and root and leaf transcriptomic response were investigated. Under well-watered conditions, gas exchange and stem water potential were mainly affected by the grafting condition, whereas under sever water deficit they were affected by the rootstock genotype. Under severe stress conditions (20% SWC), 1103P showed an "avoidance" behavior. It reduced stomatal conductance, inhibited photosynthesis, increased ABA content in the roots, and closed the stomata. The 101-14MGt maintained a high photosynthetic rate, limiting the reduction of soil water potential. This behavior results in a "tolerance" strategy. An analysis of the transcriptome showed that most of the differentially expressed genes were detected at 20% SWC, and more significantly in roots than in leaves. A core set of genes has been highlighted on the roots as being related to the root response to drought that are not affected by genotype nor grafting. Genes specifically regulated by grafting and genes specifically regulated by genotype under drought conditions have been identified as well. The 1103P, more than the 101-14MGt, regulated a high number of genes in both own-rooted and grafted conditions. This different regulation revealed that 1103P rootstock readily perceived the water scarcity and rapidly faced the stress, in agreement with its avoidance strategy.
Collapse
Affiliation(s)
- Davide Bianchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Valentina Ricciardi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Carola Pozzoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Daniele Grossi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Leila Caramanico
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Massimo Pindo
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Erika Stefani
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Alessandro Cestaro
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| |
Collapse
|
5
|
Migicovsky Z, Quigley MY, Mullins J, Ali T, Swift JF, Agasaveeran AR, Dougherty JD, Grant BM, Korkmaz I, Malpeddi MR, McNichol EL, Sharp AW, Harris JL, Hopkins DR, Jordan LM, Kwasniewski MT, Striegler RK, Dowtin AL, Stotts S, Cousins P, Chitwood DH. X-ray imaging of 30 year old wine grape wood reveals cumulative impacts of rootstocks on scion secondary growth and Ravaz index. HORTICULTURE RESEARCH 2022; 10:uhac226. [PMID: 36643757 PMCID: PMC9832875 DOI: 10.1093/hr/uhac226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Annual rings from 30 year old vines in a California rootstock trial were measured to determine the effects of 15 different rootstocks on Chardonnay and Cabernet Sauvignon scions. Viticultural traits measuring vegetative growth, yield, berry quality, and nutrient uptake were collected at the beginning (1995 to 1999) and end (2017 to 2020) of the lifetime of a vineyard initially planted in 1991 and removed in 2021. X-ray Computed Tomography (CT) was used to measure ring widths in 103 vines. Ring width was modeled as a function of ring number using a negative exponential model. Early and late wood ring widths, cambium width, and scion trunk radius were correlated with 27 traits. Modeling of annual ring width shows that scions alter the width of the first rings but that rootstocks alter the decay of later rings, consistently shortening ring width throughout the lifetime of the vine. Ravaz index, juice pH, photosynthetic assimilation and transpiration rates, and instantaneous water use efficiency are correlated with scion trunk radius. Ultimately, our research indicates that rootstocks modulate secondary growth over years, altering physiology and agronomic traits. Rootstocks act in similar but distinct ways from climate to modulate ring width, which borrowing techniques from dendrochronology, can be used to monitor both genetic and environmental effects in woody perennial crop species.
Collapse
Affiliation(s)
| | - Michelle Y Quigley
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Joey Mullins
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Tahira Ali
- College of Natural Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Neuroscience, Michigan State University, East Lansing, MI, 48823, USA
| | - Joel F Swift
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Anita Rose Agasaveeran
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48823, USA
| | - Joseph D Dougherty
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
- College of Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Brendan Michael Grant
- College of Social Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Economics, Michigan State University, East Lansing, MI, 48823, USA
| | - Ilayda Korkmaz
- College of Natural Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Maneesh Reddy Malpeddi
- College of Social Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Economics, Michigan State University, East Lansing, MI, 48823, USA
| | - Emily L McNichol
- College of Engineering, Michigan State University, East Lansing, MI, 48823, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Andrew W Sharp
- College of Arts and Letters, Michigan State University, East Lansing, MI, 48823, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | | | | | - Lindsay M Jordan
- E. & J. Gallo Winery, Acampo, CA, 95220, USA
- Current affiliation: Constellation Brands, Soledad, CA, 93960, USA
| | - Misha T Kwasniewski
- Department of Food Science, The Pennsylvania State University, State College, PA, 16803, USA
| | | | - Asia L Dowtin
- Department of Forestry, Michigan State University, East Lansing, MI, 48823, USA
| | - Stephanie Stotts
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | | | | |
Collapse
|