1
|
Sun Q, Li X, Sun L, Sun M, Xu H, Zhou X. Plant hormones and phenolic acids response to UV-B stress in Rhododendron chrysanthum pall. Biol Direct 2024; 19:40. [PMID: 38807240 PMCID: PMC11134694 DOI: 10.1186/s13062-024-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.
Collapse
Affiliation(s)
- Qi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiangqun Li
- Jilin Engineering Vocational College, Siping, China
| | - Li Sun
- Siping Central People's Hospital, Siping, China
| | - Mingyi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
2
|
Dean JV, Willis M, Shaban L. Transport of acylated anthocyanins by the Arabidopsis ATP-binding cassette transporters AtABCC1, AtABCC2, and AtABCC14. PHYSIOLOGIA PLANTARUM 2022; 174:e13780. [PMID: 36121340 DOI: 10.1111/ppl.13780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins are a group of pigments that have various roles in plants including attracting pollinators and seed dispersers and protecting against various types of stress. In vegetative tissue, these anthocyanins are sequestered in the vacuole following biosynthesis in the cytoplasm, though there remain questions as to the events leading to the vacuolar sequestration. In this study, we were able to show that the uptake of acylated anthocyanins by vacuolar membrane-enriched vesicles isolated from Arabidopsis was stimulated by the addition of MgATP and was inhibited by both vanadate and glybenclamide, but not by gramicidin D or bafilomycin A1 , suggesting that uptake involves an ATP-binding cassette (ABC) transporter and not an H+ -antiporter. Membrane vesicles isolated from yeast expressing the ABC transporters designated AtABCC1, AtABCC2, and AtABCC14 are capable of MgATP-dependent uptake of acylated anthocyanins. This uptake was not dependent on glutathione as seen previously for anthocyanidin 3-O-monoglucosides. Compared to the wild-type, the transport of acylated anthocyanins was lower in vacuolar membrane-enriched vesicles isolated from atabcc1 cell cultures providing evidence that AtABCC1 may be the predominant transporter of these compounds in vivo. In addition, the pattern of anthocyanin accumulation differed between the atabcc1, atabcc2, and atabcc14 mutants and the wild-type seedlings under anthocyanin inductive conditions. We suggest that AtABCC1, AtABCC2, and AtABCC14 are involved in the vacuolar transport of acylated anthocyanins produced in the vegetative tissue of Arabidopsis and that the pattern of anthocyanin accumulation can be altered depending on the presence or absence of a specific vacuolar ABC transporter.
Collapse
Affiliation(s)
- John V Dean
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Morgan Willis
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Laith Shaban
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
3
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
4
|
Zhang Q, Li M, Xia CY, Zhang WJ, Yin ZG, Zhang YL, Fang QX, Liu YC, Zhang MY, Zhang WH, Du JD, Du YL. Transcriptome-based analysis of salt-related genes during the sprout stage of common bean (Phaseolus vulgaris) under salt stress conditions. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1954091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Qi Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Li
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chun Yang Xia
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Jing Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhen Gong Yin
- Bean Crops Laboratory, Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - You Li Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing Xi Fang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yang Cheng Liu
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Yu Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Hui Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ji Dao Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| | - Yan Li Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| |
Collapse
|
5
|
Chialva C, Blein T, Crespi M, Lijavetzky D. Insights into long non-coding RNA regulation of anthocyanin carrot root pigmentation. Sci Rep 2021; 11:4093. [PMID: 33603038 PMCID: PMC7892999 DOI: 10.1038/s41598-021-83514-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Carrot (Daucus carota L.) is one of the most cultivated vegetable in the world and of great importance in the human diet. Its storage organs can accumulate large quantities of anthocyanins, metabolites that confer the purple pigmentation to carrot tissues and whose biosynthesis is well characterized. Long non-coding RNAs (lncRNAs) play critical roles in regulating gene expression of various biological processes in plants. In this study, we used a high throughput stranded RNA-seq to identify and analyze the expression profiles of lncRNAs in phloem and xylem root samples using two genotypes with a strong difference in anthocyanin production. We discovered and annotated 8484 new genes, including 2095 new protein-coding and 6373 non-coding transcripts. Moreover, we identified 639 differentially expressed lncRNAs between the phenotypically contrasted genotypes, including certain only detected in a particular tissue. We then established correlations between lncRNAs and anthocyanin biosynthesis genes in order to identify a molecular framework for the differential expression of the pathway between genotypes. A specific natural antisense transcript linked to the DcMYB7 key anthocyanin biosynthetic transcription factor suggested how the regulation of this pathway may have evolved between genotypes.
Collapse
Affiliation(s)
- Constanza Chialva
- grid.507426.2Facultad de Ciencias Agrarias, Instituto de Biología Agrícola de Mendoza (IBAM), UNCuyo, CONICET, Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza Argentina
| | - Thomas Blein
- grid.4444.00000 0001 2112 9282Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris, Batiment 630, Gif Sur Yvette, France
| | - Martin Crespi
- grid.4444.00000 0001 2112 9282Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris, Batiment 630, Gif Sur Yvette, France
| | - Diego Lijavetzky
- grid.507426.2Facultad de Ciencias Agrarias, Instituto de Biología Agrícola de Mendoza (IBAM), UNCuyo, CONICET, Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza Argentina
| |
Collapse
|
6
|
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. FRONTIERS IN PLANT SCIENCE 2020; 11:556972. [PMID: 33013974 DOI: 10.3389/fpls.2020.556972/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
The drought stress responses of vascular plants are complex regulatory mechanisms because they include various physiological responses from signal perception under water deficit conditions to the acquisition of drought stress resistance at the whole-plant level. It is thought that plants first recognize water deficit conditions in roots and that several molecular signals then move from roots to shoots. Finally, a phytohormone, abscisic acid (ABA) is synthesized mainly in leaves. However, the detailed molecular mechanisms of stress sensors and the regulators that initiate ABA biosynthesis in response to drought stress conditions are still unclear. Another important issue is how plants adjust ABA propagation, stress-mediated gene expression and metabolite composition to acquire drought stress resistance in different tissues throughout the whole plant. In this review, we summarize recent advances in research on drought stress responses, focusing on long-distance signaling from roots to shoots, ABA synthesis and transport, and metabolic regulation in both cellular and whole-plant levels of Arabidopsis and crops. We also discuss coordinated mechanisms for acquiring drought stress adaptations and resistance via tissue-to-tissue communication and long-distance signaling.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
7
|
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. FRONTIERS IN PLANT SCIENCE 2020; 11:556972. [PMID: 33013974 PMCID: PMC7511591 DOI: 10.3389/fpls.2020.556972] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 05/17/2023]
Abstract
The drought stress responses of vascular plants are complex regulatory mechanisms because they include various physiological responses from signal perception under water deficit conditions to the acquisition of drought stress resistance at the whole-plant level. It is thought that plants first recognize water deficit conditions in roots and that several molecular signals then move from roots to shoots. Finally, a phytohormone, abscisic acid (ABA) is synthesized mainly in leaves. However, the detailed molecular mechanisms of stress sensors and the regulators that initiate ABA biosynthesis in response to drought stress conditions are still unclear. Another important issue is how plants adjust ABA propagation, stress-mediated gene expression and metabolite composition to acquire drought stress resistance in different tissues throughout the whole plant. In this review, we summarize recent advances in research on drought stress responses, focusing on long-distance signaling from roots to shoots, ABA synthesis and transport, and metabolic regulation in both cellular and whole-plant levels of Arabidopsis and crops. We also discuss coordinated mechanisms for acquiring drought stress adaptations and resistance via tissue-to-tissue communication and long-distance signaling.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- *Correspondence: Fuminori Takahashi,
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|