1
|
Slusher GA, Kottke PA, Culberson AL, Chilmonczyk MA, Fedorov AG. Microfluidics enabled multi-omics triple-shot mass spectrometry for cell-based therapies. BIOMICROFLUIDICS 2024; 18:011302. [PMID: 38268742 PMCID: PMC10807926 DOI: 10.1063/5.0175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
In recent years, cell-based therapies have transformed medical treatment. These therapies present a multitude of challenges associated with identifying the mechanism of action, developing accurate safety and potency assays, and achieving low-cost product manufacturing at scale. The complexity of the problem can be attributed to the intricate composition of the therapeutic products: living cells with complex biochemical compositions. Identifying and measuring critical quality attributes (CQAs) that impact therapy success is crucial for both the therapy development and its manufacturing. Unfortunately, current analytical methods and tools for identifying and measuring CQAs are limited in both scope and speed. This Perspective explores the potential for microfluidic-enabled mass spectrometry (MS) systems to comprehensively characterize CQAs for cell-based therapies, focusing on secretome, intracellular metabolome, and surfaceome biomarkers. Powerful microfluidic sampling and processing platforms have been recently presented for the secretome and intracellular metabolome, which could be implemented with MS for fast, locally sampled screening of the cell culture. However, surfaceome analysis remains limited by the lack of rapid isolation and enrichment methods. Developing innovative microfluidic approaches for surface marker analysis and integrating them with secretome and metabolome measurements using a common analytical platform hold the promise of enhancing our understanding of CQAs across all "omes," potentially revolutionizing cell-based therapy development and manufacturing for improved efficacy and patient accessibility.
Collapse
Affiliation(s)
| | - Peter A. Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | | | | | | |
Collapse
|
2
|
Chilmonczyk MA, Kottke PA, Stevens HY, Guldberg RE, Fedorov AG. Dynamic mass spectrometry probe for electrospray ionization mass spectrometry monitoring of bioreactors for therapeutic cell manufacturing. Biotechnol Bioeng 2019; 116:121-131. [PMID: 30199089 PMCID: PMC6310154 DOI: 10.1002/bit.26832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023]
Abstract
Large-scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI-MS) is a highly sensitive label-free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI-MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI-MS detection of biomolecules in high-salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal-to-noise ratio. As a result, sensitivity for low-concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.
Collapse
Affiliation(s)
- Mason A. Chilmonczyk
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Peter A. Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Hazel Y. Stevens
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Robert E. Guldberg
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- NSF ERC Center for Therapeutic Cell Manufacturing (CMaT), Parker H. Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrei G. Fedorov
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- NSF ERC Center for Therapeutic Cell Manufacturing (CMaT), Parker H. Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
3
|
Wu R, Nijland M, Rutgers B, Veenstra R, Langendonk M, van der Meeren LE, Kluin PM, Li G, Diepstra A, Chiu JF, van den Berg A, Visser L. Proteomics Based Identification of Proteins with Deregulated Expression in B Cell Lymphomas. PLoS One 2016; 11:e0146624. [PMID: 26752561 PMCID: PMC4708982 DOI: 10.1371/journal.pone.0146624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Follicular lymphoma and diffuse large B cell lymphomas comprise the main entities of adult B cell malignancies. Although multiple disease driving gene aberrations have been identified by gene expression and genomic studies, only a few studies focused at the protein level. We applied 2 dimensional gel electrophoresis to compare seven GC B cell non Hodgkin lymphoma (NHL) cell lines with a lymphoblastoid cell line (LCL). An average of 130 spots were at least two folds different in intensity between NHL cell lines and the LCL. We selected approximately 38 protein spots per NHL cell line and linked them to 145 unique spots based on the location in the gel. 34 spots that were found altered in at least three NHL cell lines when compared to LCL, were submitted for LC-MS/MS. This resulted in 28 unique proteins, a substantial proportion of these proteins were involved in cell motility and cell metabolism. Loss of expression of B2M, and gain of expression of PRDX1 and PPIA was confirmed in the cell lines and primary lymphoma tissue. Moreover, inhibition of PPIA with cyclosporine A blocked cell growth of the cell lines, the effect size was associated with the PPIA expression levels. In conclusion, we identified multiple differentially expressed proteins by 2-D proteomics, and showed that some of these proteins might play a role in the pathogenesis of NHL.
Collapse
Affiliation(s)
- Rui Wu
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Biochemistry, Open laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | - Marcel Nijland
- Department of Hematology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne Veenstra
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Myra Langendonk
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Lotte E. van der Meeren
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Philip M. Kluin
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Guanwu Li
- Department of Biochemistry, Open laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jen-Fu Chiu
- Department of Biochemistry, Open laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines. Molecules 2015; 20:7474-94. [PMID: 25915462 PMCID: PMC4863944 DOI: 10.3390/molecules20057474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/12/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022] Open
Abstract
Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.
Collapse
|
5
|
Yeo AT, Porco JA, Gilmore TD. Bcl-XL, but not Bcl-2, can protect human B-lymphoma cell lines from parthenolide-induced apoptosis. Cancer Lett 2011; 318:53-60. [PMID: 22155272 DOI: 10.1016/j.canlet.2011.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
In this report, we investigated the effects of the natural product parthenolide on human B-lymphoma cell lines. We show that parthenolide inhibited NF-κB transcription factor c-Rel (REL). In addition, the sensitivity of several human B-lymphoma cell lines to parthenolide-induced apoptosis inversely correlated with their levels of anti-apoptosis protein Bcl-X(L). Furthermore, ectopic expression of Bcl-X(L) (but not Bcl-2) in two B-lymphoma cell lines decreased their sensitivity to parthenolide-induced apoptosis. Finally, over-expression of a transforming mutant of REL, which increased expression of endogenous Bcl-X(L), decreased the sensitivity of BJAB B-lymphoma cells to parthenolide-induced apoptosis. These results demonstrate that the NF-κB target gene products Bcl-X(L) and Bcl-2 can play different roles in protecting B-lymphoma cells from chemical-induced apoptosis.
Collapse
Affiliation(s)
- Alan T Yeo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
6
|
Thompson RC, Herscovitch M, Zhao I, Ford TJ, Gilmore TD. NF-kappaB down-regulates expression of the B-lymphoma marker CD10 through a miR-155/PU.1 pathway. J Biol Chem 2010; 286:1675-82. [PMID: 20947507 DOI: 10.1074/jbc.m110.177063] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-surface protein CD10 is a prognostic marker for diffuse large B-cell lymphoma (DLBCL), where high expression of CD10 is found in the germinal center B-cell (GCB) subtype and CD10 expression is low or absent in the activated B-cell (ABC) subtype. As compared with the GCB subtype, patients with ABC DLBCL have a poorer prognosis after standard treatment, and ABC tumor cells have higher NF-κB activity. Herein, we show that increased expression of the NF-κB target micro-RNA miR-155 is correlated with reduced expression of transcription factor PU.1 and CD10 in several B-lymphoma cell lines. Moreover, electromobility shift assays and luciferase reporter assays indicate that PU.1 can directly activate expression from the CD10 promoter. Expression of a DLBCL-derived mutant of the adaptor CARD11 (a constitutive activator of NF-κB) in the GCB-like human BJAB cell line or v-Rel in the chicken DT40 B-lymphoma cell line causes reduced expression of PU.1. The CARD11 mutant also causes a decrease in CD10 levels in BJAB cells. Similarly, overexpression of miR-155, which is known to down-regulate PU.1, leads to reduced expression of CD10 in BJAB cells. Finally, we show that CD10 expression is reduced in BJAB cells after treatment with the NF-κB inducer lipopolysaccharide (LPS). Additionally, miR-155 is induced by LPS treatment or expression of the CARD11 mutant in BJAB cells. These results point to an NF-κB-dependent mechanism for down-regulation of CD10 in B-cell lymphoma: namely, that increased NF-κB activity leads to increased miR-155, which results in decreased PU.1, and consequently reduced CD10 mRNA and protein.
Collapse
Affiliation(s)
- Ryan C Thompson
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
7
|
Shi HJ, Stubbs R, Hood K. Characterization of de novo synthesized proteins released from human colorectal tumour explants. Electrophoresis 2009; 30:2442-53. [PMID: 19639566 DOI: 10.1002/elps.200800767] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumours release many proteins into their microenvironment. These proteins may enter the blood stream and have value as cancer biomarkers. We examined the range of proteins released by colorectal cancer (CRC) liver metastasis (LM) specimens and normal colon mucosa during 16 h culture as explants in the presence of [35S]-methionine. Proteins released into the conditioned media were isolated and separated by 2-DE and detected by CBB stain and de novo synthesized proteins by autoradiography. The majority of proteins released by CRC LM explants in short-term culture were plasma proteins from tumour interstitial fluid and tissue breakdown products including mitochondrial and nuclear proteins from pre-existing necrotic cells within the tumours. De novo synthesized proteins were present at a lower abundance and included a high proportion of cytoplasmic proteins in addition to classically secreted proteins. Many cytoplasmic proteins were also present in the autoradiograph secretomes of four CRC cell lines examined, despite high cell viability (>97%), suggestive of an alternative release mechanism. The secretome profiles varied significantly between different patients, and also between different cell lines, despite low intra-experimental variation. Quantitative analysis of the autoradiograph secretome profiles prepared from tumour and normal colon mucosa tissues revealed 32 protein spots that were differentially abundant between the normal and cancer tissue secretome, including desmocollin-2 and fibrinogen gamma chain, which were upregulated and downregulated in the CRC LM secretomes, respectively. Further characterization of de novo synthesized proteins released from human tumours may help to discover a novel set of serological markers for CRC.
Collapse
Affiliation(s)
- Hong Jun Shi
- Wakefield Gastroenterology Research Institute, Wakefield Hospital, Wellington, New Zealand
| | | | | |
Collapse
|
8
|
Abstract
Proteomics technologies are emerging as a useful tool in the identification of disease biomarkers, and in defining and characterising both normal physiological and disease processes. Many cellular changes in protein expression in response to an external stimulus or mutation can only be characterised at the proteome level. In these cases protein expression is often controlled by altered rates of translation and/or degradation, making proteomics an important tool in the analysis of biological systems. In the leukaemias, post-translational modification of proteins (e.g. phosphorylation, acetylation) plays a key role in the molecular pathology of the disease: such modifications can now be detected with novel proteomic methods. In a clinical setting, serum remains a relatively un-mined source of information for prognosis and response to therapy. This protein rich fluid represents an opportunity for proteomics research to benefit hematologists and others. In this review, we discuss the technologies available for the study of the proteome that offer realistic opportunities in haematology.
Collapse
Affiliation(s)
- Richard D Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Christie Hospital, Kinnaird House, Kinnaird Road, Withington, Manchester, UK M20 4QL.
| | | |
Collapse
|
9
|
Gez S, Crossett B, Christopherson RI. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1173-83. [PMID: 17698427 DOI: 10.1016/j.bbapap.2007.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/05/2007] [Accepted: 06/15/2007] [Indexed: 12/18/2022]
Abstract
Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.
Collapse
Affiliation(s)
- Swetlana Gez
- School of Molecular and Microbial Biosciences G08, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
10
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:266-277. [PMID: 17262881 DOI: 10.1002/jms.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
11
|
Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 2006; 103:9482-7. [PMID: 16769897 PMCID: PMC1480433 DOI: 10.1073/pnas.0601637103] [Citation(s) in RCA: 638] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In both normal and pathological states, cells respond rapidly to environmental cues by synthesizing new proteins. The selective identification of a newly synthesized proteome has been hindered by the basic fact that all proteins, new and old, share the same pool of amino acids and thus are chemically indistinguishable. We describe here a technology, based on the cotranslational introduction of azide groups into proteins and the chemoselective tagging of azide-labeled proteins with an alkyne affinity tag, to separate and identify, specifically, the newly synthesized proteins in mammalian cells. Incorporation of the azide-bearing amino acid azidohomoalanine is unbiased, not toxic, and does not increase protein degradation. As a first demonstration of the method, we report the selective purification and identification of 195 metabolically labeled proteins with multidimensional liquid chromatography in-line with tandem MS. Furthermore, in combination with leucine-based mass tagging, candidates were immediately validated as newly synthesized proteins. The identified proteins, synthesized in a 2-h window, possess a broad range of biochemical properties and span most functional gene ontology categories. This technology makes it possible to address the temporal and spatial characteristics of newly synthesized proteomes in any cell type.
Collapse
Affiliation(s)
| | - A. James Link
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Erin M. Schuman
- *Division of Biology, Howard Hughes Medical Institute, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|