1
|
Wang S, Jiang L, Cui L, Alain K, Xie S, Shao Z. Transcriptome Analysis of Cyclooctasulfur Oxidation and Reduction by the Neutrophilic Chemolithoautotrophic Sulfurovum indicum from Deep-Sea Hydrothermal Ecosystems. Antioxidants (Basel) 2023; 12:antiox12030627. [PMID: 36978876 PMCID: PMC10045233 DOI: 10.3390/antiox12030627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chemolithoautotrophic Campylobacterota are widespread and predominant in worldwide hydrothermal vents, and they are key players in the turnover of zero-valence sulfur. However, at present, the mechanism of cyclooctasulfur activation and catabolism in Campylobacterota bacteria is not clearly understood. Here, we investigated these processes in a hydrothermal vent isolate named Sulfurovum indicum ST-419. A transcriptome analysis revealed that multiple genes related to biofilm formation were highly expressed during both sulfur oxidation and reduction. Additionally, biofilms containing cells and EPS coated on sulfur particles were observed by SEM, suggesting that biofilm formation may be involved in S0 activation in Sulfurovum species. Meanwhile, several genes encoding the outer membrane proteins of OprD family were also highly expressed, and among them, gene IMZ28_RS00565 exhibited significantly high expressions by 2.53- and 7.63-fold changes under both conditions, respectively, which may play a role in sulfur uptake. However, other mechanisms could be involved in sulfur activation and uptake, as experiments with dialysis bags showed that direct contact between cells and sulfur particles was not mandatory for sulfur reduction activity, whereas cell growth via sulfur oxidation did require direct contact. This indirect reaction could be ascribed to the role of H2S and/or other thiol-containing compounds, such as cysteine and GSH, which could be produced in the culture medium during sulfur reduction. In the periplasm, the sulfur-oxidation-multienzyme complexes soxABXY1Z1 and soxCDY2Z2 are likely responsible for thiosulfate oxidation and S0 oxidation, respectively. In addition, among the four psr gene clusters encoding polysulfide reductases, only psrA3B3C3 was significantly upregulated under the sulfur reduction condition, implying its essential role in sulfur reduction. These results expand our understanding of the interactions of Campylobacterota with the zero-valence sulfur and their adaptability to deep-sea hydrothermal environments.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
- Correspondence: (L.J.); (Z.S.)
| | - Liang Cui
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, China
| | - Karine Alain
- CNRS, Université Brest, Ifremer, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France
| | - Shaobin Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: (L.J.); (Z.S.)
| |
Collapse
|
2
|
Jung H, Inaba Y, Banta S. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans. Trends Biotechnol 2021; 40:677-692. [PMID: 34794837 DOI: 10.1016/j.tibtech.2021.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
There are several natural and anthropomorphic environments where iron- and/or sulfur-oxidizing bacteria thrive in extremely acidic conditions. These acidophilic chemolithautotrophs play important roles in biogeochemical iron and sulfur cycles, are critical catalysts for industrial metal bioleaching operations, and have underexplored potential in future biotechnological applications. However, their unique growth conditions complicate the development of genetic techniques. Over the past few decades genetic tools have been successfully developed for Acidithiobacillus ferrooxidans, which serves as a model organism that exhibits both iron- and sulfur-oxidizing capabilities. Conjugal transfer of plasmids has enabled gene overexpression, gene knockouts, and some preliminary metabolic engineering. We highlight the development of genetic systems and recent genetic engineering of A. ferrooxidans, and discuss future perspectives.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
3
|
Li M, Wen J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microb Cell Fact 2021; 20:178. [PMID: 34496835 PMCID: PMC8425152 DOI: 10.1186/s12934-021-01671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Bio-mining microorganisms are a key factor affecting the metal recovery rate of bio-leaching, which inevitably produces an extremely acidic environment. As a powerful tool for exploring the adaptive mechanisms of microorganisms in extreme environments, omics technologies can greatly aid our understanding of bio-mining microorganisms and their communities on the gene, mRNA, and protein levels. These omics technologies have their own advantages in exploring microbial diversity, adaptive evolution, changes in metabolic characteristics, and resistance mechanisms of single strains or their communities to extreme environments. These technologies can also be used to discover potential new genes, enzymes, metabolites, metabolic pathways, and species. In addition, integrated multi-omics analysis can link information at different biomolecular levels, thereby obtaining more accurate and complete global adaptation mechanisms of bio-mining microorganisms. This review introduces the current status and future trends in the application of omics technologies in the study of bio-mining microorganisms and their communities in extreme environments.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Blake RC, White RA. In situ absorbance measurements: a new means to study respiratory electron transfer in chemolithotrophic microorganisms. Adv Microb Physiol 2020; 76:81-127. [PMID: 32408948 DOI: 10.1016/bs.ampbs.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Absorbance measurements on intact chemolithotrophic microorganisms that respire aerobically on soluble iron are described that used a novel integrating cavity absorption meter to eliminate the effects of light scattering on the experimental results. Steady state kinetic measurements on ferric iron production by intact cells revealed that the Michaelis Menten equation described the initial rates of product formation for at least 8 different chemolithotrophic microorganisms in 6 phyla distributed equally among the archaea and the Gram negative and Gram positive eubacteria. Cell-monitored turnover measurements during aerobic respiration on soluble iron by the same 12 intact microorganisms revealed six different patterns of iron-dependent absorbance changes, suggesting that there may be at least six different sets of prosthetic groups and biomolecules that can accomplish aerobic respiration on soluble iron. Detailed kinetic studies revealed that the 3-component iron respiratory chain of Acidithiobacillus ferrooxidans functioned as an ensemble with a single macroscopic rate constant when the iron-reduced proteins were oxidized in the presence of excess molecular oxygen. The principal member of this 3-component system was a cupredoxin called rusticyanin that was present in the periplasm of At. ferrooxidans at an approximate concentration of 350 mg/mL, an observation that provides new insights into the crowded environments in the periplasms of Gram negative eubacteria that conduct electrons across their periplasm. The ability to conduct direct spectrophotometric measurements under noninvasive physiological conditions represents a new and powerful approach to examine the rates and extents of biological events in situ without disrupting the complexity of the live cellular environment.
Collapse
Affiliation(s)
- Robert C Blake
- College of Pharmacy, Xavier University of Louisiana, New Orleans, United States
| | - Richard A White
- Department of Plant Pathology, Washington State University, Pullman, WA, United States; RAW Molecular Systems (RMS) LLC, Spokane, WA, United States; Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 2019; 35:60. [PMID: 30919119 DOI: 10.1007/s11274-019-2632-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.
Collapse
Affiliation(s)
- Yue Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Mengran Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Jiangong Duan
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, Gansu Province, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China. .,College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
6
|
Borilova S, Mandl M, Zeman J, Kucera J, Pakostova E, Janiczek O, Tuovinen OH. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Acidithiobacillus ferrooxidans? Front Microbiol 2019; 9:3134. [PMID: 30619202 PMCID: PMC6305575 DOI: 10.3389/fmicb.2018.03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
According to the literature, pyrite (FeS2) oxidation has been previously determined to involve thiosulfate as the first aqueous intermediate sulfur product, which is further oxidized to sulfate. In the present study, pyrite oxidation by Acidithiobacillus ferrooxidans was studied using electrochemical and metabolic approaches in an effort to extend existing knowledge on the oxidation mechanism. Due to the small surface area, the reaction rate of a compact pyrite electrode in the form of polycrystalline pyrite aggregate in A. ferrooxidans suspension was very slow at a spontaneously formed high redox potential. The slow rate made it possible to investigate the oxidation process in detail over a term of 100 days. Using electrochemical parameters from polarization curves and levels of released iron, the number of exchanged electrons per pyrite molecule was estimated. The values close to 14 and 2 electrons were determined for the oxidation with and without bacteria, respectively. These results indicated that sulfate was the dominant first aqueous sulfur species formed in the presence of bacteria and elemental sulfur was predominantly formed without bacteria. The stoichiometric calculations are consistent with high iron-oxidizing activities of bacteria that continually keep the released iron in the ferric form, resulting in a high redox potential. The sulfur entity of pyrite was oxidized to sulfate by Fe3+ without intermediate thiosulfate under these conditions. Cell attachment on the corroded pyrite electrode surface was documented although pyrite surface corrosion by Fe3+ was evident without bacterial participation. Attached cells may be important in initiating the oxidation of the pyrite surface to release iron from the mineral. During the active phase of oxidation of a pyrite concentrate sample, the ATP levels in attached and planktonic bacteria were consistent with previously established ATP content of iron-oxidizing cells. No significant upregulation of three essential genes involved in energy metabolism of sulfur compounds was observed in the planktonic cells, which represented the dominant biomass in the pyrite culture. The study demonstrated the formation of sulfate as the first dissolved sulfur species with iron-oxidizing bacteria under high redox potential conditions. Minor aqueous sulfur intermediates may be formed but as a result of side reactions.
Collapse
Affiliation(s)
- Sarka Borilova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Mandl
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Josef Zeman
- Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Pakostova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Oldrich Janiczek
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Olli H Tuovinen
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Blake II RC, Anthony MD, Bates JD, Hudson T, Hunter KM, King BJ, Landry BL, Lewis ML, Painter RG. In situ Spectroscopy Reveals that Microorganisms in Different Phyla Use Different Electron Transfer Biomolecules to Respire Aerobically on Soluble Iron. Front Microbiol 2016; 7:1963. [PMID: 28008327 PMCID: PMC5143472 DOI: 10.3389/fmicb.2016.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
Absorbance spectra were collected on 12 different live microorganisms, representing six phyla, as they respired aerobically on soluble iron at pH 1.5. A novel integrating cavity absorption meter was employed that permitted accurate absorbance measurements in turbid suspensions that scattered light. Illumination of each microorganism yielded a characteristic spectrum of electrochemically reduced colored prosthetic groups. A total of six different patterns of reduced-minus-oxidized difference spectra were observed. Three different spectra were obtained with members of the Gram-negative eubacteria. Acidithiobacillus, representing Proteobacteria, yielded a spectrum in which cytochromes a and c and a blue copper protein were all prominent. Acidihalobacter, also representing the Proteobacteria, yielded a spectrum in which both cytochrome b and a long-wavelength cytochrome a were clearly visible. Two species of Leptospirillum, representing the Nitrospirae, both yielded spectra that were dominated by a cytochrome with a reduced peak at 579 nm. Sulfobacillus and Alicyclobacillus, representing the Gram-positive Firmicutes, both yielded spectra dominated by a-type cytochromes. Acidimicrobium and Ferrimicrobium, representing the Gram-positive Actinobacteria, also yielded spectra dominated by a-type cytochromes. Acidiplasma and Ferroplasma, representing the Euryarchaeota, both yielded spectra dominated by a ba3-type of cytochrome. Metallosphaera and Sulfolobus, representing the Crenarchaeota, both yielded spectra dominated by the same novel cytochrome as that observed in the Nitrospirae and a new, heretofore unrecognized redox-active prosthetic group with a reduced peak at around 485 nm. These observations are consistent with the hypothesis that individual acidophilic microorganisms that respire aerobically on iron utilize one of at least six different types of electron transfer pathways that are characterized by different redox-active prosthetic groups. In situ absorbance spectroscopy is shown to be a useful complement to existing means of investigating the details of energy conservation in intact microorganisms under physiological conditions.
Collapse
Affiliation(s)
| | - Micah D. Anthony
- College of Pharmacy, Xavier University of Louisiana, New OrleansLA, USA
| | - Jordan D. Bates
- College of Pharmacy, Xavier University of Louisiana, New OrleansLA, USA
| | - Theresa Hudson
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Kamilya M. Hunter
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Brionna J. King
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Bria L. Landry
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | - Megan L. Lewis
- Department of Biology, Xavier University of Louisiana, New OrleansLA, USA
| | | |
Collapse
|
8
|
Li TF, Painter RG, Ban B, Blake RC. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant. J Biol Chem 2015; 290:18293-303. [PMID: 26041781 PMCID: PMC4513090 DOI: 10.1074/jbc.m115.657551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm(2) in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s(-1). The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment.
Collapse
Affiliation(s)
- Ting-Feng Li
- From the College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Richard G Painter
- From the College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Bhupal Ban
- From the College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Robert C Blake
- From the College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| |
Collapse
|
9
|
Barco RA, Edwards KJ. Interactions of proteins with biogenic iron oxyhydroxides and a new culturing technique to increase biomass yields of neutrophilic, iron-oxidizing bacteria. Front Microbiol 2014; 5:259. [PMID: 24910632 PMCID: PMC4038746 DOI: 10.3389/fmicb.2014.00259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 12/02/2022] Open
Abstract
Neutrophilic, bacterial iron-oxidation remains one of the least understood energy-generating biological reactions to date. One of the reasons it remains under-studied is because there are inherent problems with working with iron-oxidizing bacteria (FeOB), including low biomass yields and interference from the iron oxides in the samples. In an effort to circumvent the problem of low biomass, a new large batch culturing technique was developed. Protein interactions with biogenic iron oxides were investigated confirming that such interactions are strong. Therefore, a protein extraction method is described to minimize binding of proteins to biogenic iron oxides. The combination of these two methods results in protein yields that are appropriate for activity assays in gels and for proteomic profiling.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
10
|
Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC, Banfield JF. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics 2013; 14:485. [PMID: 23865623 PMCID: PMC3750248 DOI: 10.1186/1471-2164-14-485] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. Results We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. Conclusion The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that subtle, but important genomic differences, coupled with unknown differences in gene expression, distinguish these organisms enough to allow for co-existence. Overall this study reveals shared features of organisms from the Thermoplasmatales lineage and provides new insights into the functioning of AMD communities.
Collapse
Affiliation(s)
- Alexis P Yelton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Vera M, Krok B, Bellenberg S, Sand W, Poetsch A. Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 2013; 13:1133-44. [PMID: 23319327 DOI: 10.1002/pmic.201200386] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic, mesophilic Gram-negative bacterium able to oxidize ferrous iron, sulfur, and metal sulfides. It forms monolayer biofilms where extracellular polymeric substances are essential for cell attachment and metal sulfide leaching. High-throughput proteomics has been applied to study the early process of biofilm formation on pyrite by At. ferrooxidans ATCC 23270. After 24 h contact with the mineral, planktonic and sessile (biofilm) cell subpopulations were separated and proteins extracted. In total, 1319 proteins were detected in both samples. Sixty-two of these were found to be increased in biofilms. Additionally, 25 proteins were found to be decreased in the biofilm cell subpopulation. Three transcriptional factors were found to be increased or decreased among both cell subpopulations, suggesting their potential involvement in the regulation of these processes. Although no significant differences were observed for the known proteins related to ferrous iron and sulfur oxidation pathways among both cell subpopulations, the results presented here show that the early steps of At. ferrooxidans biofilm formation consist of a set of metabolic adaptations following cell attachment to the mineral surface. Functions such as extracellular polymeric substances biosynthesis seem to be pivotal. This first high-throughput proteomic study may also contribute to the annotation of several unknown At. ferrooxidans proteins found.
Collapse
Affiliation(s)
- Mario Vera
- Biofilm Centre, University of Duisburg-Essen, Duisburg-Essen, Germany
| | | | | | | | | |
Collapse
|
12
|
Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis. Antonie van Leeuwenhoek 2013; 103:905-19. [DOI: 10.1007/s10482-012-9872-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/24/2012] [Indexed: 11/26/2022]
|
13
|
Tetrathionate-forming thiosulfate dehydrogenase from the acidophilic, chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. Appl Environ Microbiol 2012; 79:113-20. [PMID: 23064330 DOI: 10.1128/aem.02251-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiosulfate dehydrogenase is known to play a significant role in thiosulfate oxidation in the acidophilic, obligately chemolithoautotroph, Acidithiobacillus ferrooxidans. Enzyme activity measured using ferricyanide as the electron acceptor was detected in cell extracts of A. ferrooxidans ATCC 23270 grown on tetrathionate or sulfur, but no activity was detected in ferrous iron-grown cells. The enzyme was enriched 63-fold from cell extracts of tetrathionate-grown cells. Maximum enzyme activity (13.8 U mg(-1)) was observed at pH 2.5 and 70°C. The end product of the enzyme reaction was tetrathionate. The enzyme reduced neither ubiquinone nor horse heart cytochrome c, which serves as an electron acceptor. A major protein with a molecular mass of ∼25 kDa was detected in the partially purified preparation. Heme was not detected in the preparation, according to the results of spectroscopic analysis and heme staining. The open reading frame of AFE_0042 was identified by BLAST by using the N-terminal amino acid sequence of the protein. The gene was found within a region that was previously noted for sulfur metabolism-related gene clustering. The recombinant protein produced in Escherichia coli had a molecular mass of ∼25 kDa and showed thiosulfate dehydrogenase activity, with maximum enzyme activity (6.5 U mg(-1)) observed at pH 2.5 and 50°C.
Collapse
|
14
|
Kucera J, Bouchal P, Cerna H, Potesil D, Janiczek O, Zdrahal Z, Mandl M. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie van Leeuwenhoek 2011; 101:561-73. [PMID: 22057833 DOI: 10.1007/s10482-011-9670-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022]
Abstract
Elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans was investigated. The apparent Michaelis constant for ferric iron was 18.6 mM. An absence of anaerobic ferric iron reduction ability was observed in bacteria maintained on elemental sulfur for an extended period of time. Upon transition from ferrous iron to elemental sulfur medium, the cells exhibited similar kinetic characteristics of ferric iron reduction under anaerobic conditions to those of cells that were originally maintained on ferrous iron. Nevertheless, a total loss of anaerobic ferric iron reduction ability after the sixth passage in elemental sulfur medium was demonstrated. The first proteomic screening of total cell lysates of anaerobically incubated bacteria resulted in the detection of 1599 protein spots in the master two-dimensional electrophoresis gel. A set of 59 more abundant and 49 less abundant protein spots that changed their protein abundances in an anaerobiosis-dependent manner was identified and compared to iron- and sulfur-grown cells, respectively. Proteomic analysis detected a significant increase in abundance under anoxic conditions of electron transporters, such as rusticyanin and cytochrome c(552), involved in the ferrous iron oxidation pathway. Therefore we suggest the incorporation of rus-operon encoded proteins in the anaerobic respiration pathway. Two sulfur metabolism proteins were identified, pyridine nucleotide-disulfide oxidoreductase and sulfide-quinone reductase. The important transcription regulator, ferric uptake regulation protein, was anaerobically more abundant. The anaerobic expression of several proteins involved in cell envelope formation indicated a gradual adaptation to elemental sulfur oxidation.
Collapse
Affiliation(s)
- Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Hödar C, Moreno P, di Genova A, Latorre M, Reyes-Jara A, Maass A, González M, Cambiazo V. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators. Biometals 2011; 25:75-93. [PMID: 21830017 DOI: 10.1007/s10534-011-9484-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/21/2011] [Indexed: 10/25/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks.
Collapse
Affiliation(s)
- Christian Hödar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Libano 5524, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mykytczuk NCS, Trevors JT, Foote SJ, Leduc LG, Ferroni GD, Twine SM. Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie Van Leeuwenhoek 2011; 100:259-77. [DOI: 10.1007/s10482-011-9584-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/29/2011] [Indexed: 11/29/2022]
|
17
|
Felício AP, de Oliveira E, Odena MA, Garcia O, Bertolini MC, Ferraz LFC, Ottoboni LMM, Novo MTM. Differential proteomic analysis of Acidithiobacillus ferrooxidans cells maintained in contact with bornite or chalcopyrite: Proteins involved with the early bacterial response. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl Microbiol Biotechnol 2010; 88:605-20. [DOI: 10.1007/s00253-010-2795-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/22/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
19
|
Bouchal P, Struhárová I, Budinská E, Sedo O, Vyhlídalová T, Zdráhal Z, van Spanning R, Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1350-8. [PMID: 20116460 DOI: 10.1016/j.bbapap.2010.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/05/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
The switch from aerobic to anaerobic respiration in the bacterium Paracoccus denitrificans is orchestrated by the action of three FNR-type transcription regulators FnrP, NNR and NarR, which are sensors for oxygen, nitric oxide and nitrite, respectively. In this work, we analyzed the protein composition of four strains (wild type, FnrP-, NNR- and NarR-mutant strains) grown aerobically, semiaerobically and semiaerobically in the presence of nitrate to discover the global role of FNR-family transcription regulators using proteomics, with data validation at the transcript and genome levels. Expression profiles were acquired using two-dimensional gel electrophoresis for 737 protein spots, in which 640 proteins were identified using mass spectrometry. The annotated 2-D proteome map provided the most comprehensive coverage of P. denitrificans proteome available to-date and can be accessed on-line at http://www.mpiib-berlin.mpg.de/2D-PAGE/. Our results revealed several types of regulation under the conditions tested: (1) FnrP-controlled regulation of nitrous oxide reductase, UspA and OmpW as confirmed at protein, transcript and DNA level (position of FNR boxes). (2) Proteins regulated via additional regulators, including proteins involved in NNR and NarR regulons: nitrate reductase beta-subunit, TonB-dependent receptors, nitrite reductase, a TenA-type transcription regulator, and an unknown protein with an alpha/beta hydrolase fold. (3) Proteins whose expression was affected mainly by the growth condition. This group contains SSU ribosomal protein S305 / sigma(54) modulation protein, and two short-chain reductase-dehydrogenase proteins.
Collapse
Affiliation(s)
- Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 2009; 10:394. [PMID: 19703284 PMCID: PMC2754497 DOI: 10.1186/1471-2164-10-394] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 08/24/2009] [Indexed: 11/10/2022] Open
Abstract
Background Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus. Results Bioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like), ctaABT (heme biogenesis and insertion), nuoI and nuoK (NADH complex subunits), sdrA1 (a NADH complex accessory protein) and atpB and atpE (ATP synthetase F0 subunits). The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB) encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit). Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1) a gene cluster (ctaRUS) that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2) a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool. Conclusion Bioinformatic analysis coupled with gene transcript profiling extends our understanding of the iron and reduced inorganic sulfur compounds oxidation pathways in A. ferrooxidans and suggests mechanisms for their regulation. The models provide unified and coherent descriptions of these processes within the type strain, eliminating previous ambiguity caused by models built from analyses of multiple and divergent strains of this microorganism.
Collapse
Affiliation(s)
- Raquel Quatrini
- Center for Bioinformatics and Genome Biology, MIFAB, Fundación Ciencia para la Vida and Depto. de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
21
|
Lochmanová G, Zdráhal Z, Konecná H, Koukalová S, Malbeck J, Soucek P, Válková M, Kiran NS, Brzobohaty B. Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3705-19. [PMID: 18775952 DOI: 10.1093/jxb/ern220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
High concentrations of cytokinins (CKs) in the cultivation medium can induce partial photomorphogenesis in dark-grown Arabidopsis seedlings. However, no significant increases in endogenous CK levels have been found in de-etiolated mutants, suggesting that either parallel pathways are involved in the light and CK responses, or changes in the sensitivity to CKs occur during photomorphogenesis. Here it is shown that even modest increases in endogenous CK levels induced by transgenic expression of the CK biosynthetic gene, ipt, can lead to many typical features of light-induced de-etiolation, including inhibition of hypocotyl elongation and partial cotyledon opening. In addition, significant changes in expression of 37 proteins (mostly related to chloroplast biogenesis, a major element of light-induced photomorphogenesis) were detected by image and mass spectrometric analysis of two-dimensionally separated proteins. The identified chloroplast proteins were all up-regulated in response to increased CKs, and more than half are up-regulated at the transcript level during light-induced photomorphogenesis according to previously published transcriptomic data. Four of the up-regulated chloroplast proteins identified here have also been shown to be up-regulated during light-induced photomorphogenesis in previous proteomic analyses. In contrast, all differentially regulated mitochondrial proteins (the second largest group of differentially expressed proteins) were down-regulated. Changes in the levels of several tubulins are consistent with the observed morphological alterations. Further, 10 out of the 37 differentially expressed proteins detected have not been linked to either photomorphogenesis or CK action in light-grown Arabidopsis seedlings in previously published transcriptomic or proteomic analyses.
Collapse
Affiliation(s)
- Gabriela Lochmanová
- Institute of Biophysics AS CR, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chi A, Valenzuela L, Beard S, Mackey AJ, Shabanowitz J, Hunt DF, Jerez CA. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis. Mol Cell Proteomics 2007; 6:2239-51. [PMID: 17911085 PMCID: PMC4631397 DOI: 10.1074/mcp.m700042-mcp200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination.
Collapse
Affiliation(s)
- An Chi
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Lissette Valenzuela
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology and Cell Dynamics and Biotechnology Institute, Faculty of Sciences, University of Chile, Santiago 7800024, Chile
| | - Simon Beard
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology and Cell Dynamics and Biotechnology Institute, Faculty of Sciences, University of Chile, Santiago 7800024, Chile
| | - Aaron J. Mackey
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Carlos A. Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology and Cell Dynamics and Biotechnology Institute, Faculty of Sciences, University of Chile, Santiago 7800024, Chile
| |
Collapse
|
23
|
Abstract
Systems Microbiology is a new way to approach research in microbiology. The idea is to treat the microorganism or community as a whole, integrating fundamental biological knowledge with OMICS research (genomics, proteomics, transcriptomics, metabolomics) and bioinformatics to obtain a global picture of how a microbial cell operates in the community. The oxidative reactions resulting in the extraction of dissolved metal values from ores is the outcome of a consortium of different microorganisms. Therefore, this bioleaching community is particularly amenable for the application of Systems Microbiology. As more genomic sequences of different biomining microorganisms become available, it will be possible to define the molecular adaptations of bacteria to their environment, the interactions between the members of the community and to predict favorable or negative changes to efficiently control metal solubilization. Some key phenomena to understand the process of biomining are biochemistry of iron and sulfur compound oxidation, bacteria-mineral interactions (chemotaxis, cell-cell communication, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. These variables should be considered in an integrative way from now on. Together with recently developed molecular methods to monitor the behavior and evolution of microbial participants during bioleaching operations, Systems Microbiology will offer a comprehensive view of the bioleaching community. The power of the OMICS approaches will be briefly reviewed. It is expected they will provide not only exciting new findings but also will allow predictions on how to keep the microbial consortium healthy and therefore efficient during the entire process of bioleaching.
Collapse
|
24
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:547-558. [PMID: 17385794 DOI: 10.1002/jms.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|