1
|
Zeng HL, Yang Q, Du H, Li H, Shen Y, Liu T, Chen X, Kamal GM, Guan Q, Cheng L, Wang J, Xu F. Proteomics and metabolomics analysis of hepatic mitochondrial metabolism in alcohol-preferring and non-preferring rats. Oncotarget 2017; 8:102020-102032. [PMID: 29254222 PMCID: PMC5731932 DOI: 10.18632/oncotarget.22040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/23/2017] [Indexed: 01/18/2023] Open
Abstract
Alcohol preference induced tolerance in humans and animals when their bodily functions adapt to compensate for the disruption caused by alcohol consumption. This was thought to be an important component of the genetic predisposition to alcoholism. To investigate the underlying mechanisms of hepatic metabolic tolerance during alcohol preference, the alcohol preferring and alcohol non-preferring rats were used in this study. The liver mitochondria were purified for comparative quantitative proteomics analysis, and the liver metabolite extracts were collected for metabolomics analysis. Our study identified 96 differentially expressed hepatic mitochondrial proteins that associated with alcohol preference, the further gene ontology and protein interaction network analysis suggest a down-regulation of amino acid metabolism and up-regulation of lipid metabolism. We found alcohol preference induced a series of enzymes decreased (e.g. SSADH and GABA-T) and several amino acids increased (e.g. glutamate and aspartate) in rat liver, indicating down-regulations of glutamate degradation occurred during alcohol preference. Most of these changes were due to the genetic differences between alcohol preferring and non-preferring animals. Furthermore, this study would provided new insights to further clarify the mechanisms of hepatic metabolic tolerance during alcohol preference.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qing Yang
- College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Taotao Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xi Chen
- College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Ghulam Mustafa Kamal
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qing Guan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, P.R. China
| |
Collapse
|
2
|
Juraeva D, Treutlein J, Scholz H, Frank J, Degenhardt F, Cichon S, Ridinger M, Mattheisen M, Witt SH, Lang M, Sommer WH, Hoffmann P, Herms S, Wodarz N, Soyka M, Zill P, Maier W, Jünger E, Gaebel W, Dahmen N, Scherbaum N, Schmäl C, Steffens M, Lucae S, Ising M, Smolka MN, Zimmermann US, Müller-Myhsok B, Nöthen MM, Mann K, Kiefer F, Spanagel R, Brors B, Rietschel M. XRCC5 as a risk gene for alcohol dependence: evidence from a genome-wide gene-set-based analysis and follow-up studies in Drosophila and humans. Neuropsychopharmacology 2015; 40:361-71. [PMID: 25035082 PMCID: PMC4443948 DOI: 10.1038/npp.2014.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022]
Abstract
Genetic factors have as large role as environmental factors in the etiology of alcohol dependence (AD). Although genome-wide association studies (GWAS) enable systematic searches for loci not hitherto implicated in the etiology of AD, many true findings may be missed owing to correction for multiple testing. The aim of the present study was to circumvent this limitation by searching for biological system-level differences, and then following up these findings in humans and animals. Gene-set-based analysis of GWAS data from 1333 cases and 2168 controls identified 19 significantly associated gene-sets, of which 5 could be replicated in an independent sample. Clustered in these gene-sets were novel and previously identified susceptibility genes. The most frequently present gene, ie in 6 out of 19 gene-sets, was X-ray repair complementing defective repair in Chinese hamster cells 5 (XRCC5). Previous human and animal studies have implicated XRCC5 in alcohol sensitivity. This phenotype is inversely correlated with the development of AD, presumably as more alcohol is required to achieve the desired effects. In the present study, the functional role of XRCC5 in AD was further validated in animals and humans. Drosophila mutants with reduced function of Ku80-the homolog of mammalian XRCC5-due to RNAi silencing showed reduced sensitivity to ethanol. In humans with free access to intravenous ethanol self-administration in the laboratory, the maximum achieved blood alcohol concentration was influenced in an allele-dose-dependent manner by genetic variation in XRCC5. In conclusion, our convergent approach identified new candidates and generated independent evidence for the involvement of XRCC5 in alcohol dependence.
Collapse
Affiliation(s)
- Dilafruz Juraeva
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henrike Scholz
- Department of Animal Physiology, University of Cologne, Cologne, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Monika Ridinger
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | | | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maren Lang
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Per Hoffmann
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Herms
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Norbert Wodarz
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | - Michael Soyka
- Private Hospital Meiringen, Meiringen, Switzerland,Department of Psychiatry, University of Munich, Munich, Germany
| | - Peter Zill
- Department of Psychiatry, University of Munich, Munich, Germany
| | - Wolfgang Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Elisabeth Jünger
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, University of Düsseldorf, Düsseldorf, Germany
| | - Norbert Dahmen
- Department of Psychiatry, University of Mainz, Mainz, Germany
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Christine Schmäl
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Steffens
- Division of Research, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Susanne Lucae
- Department of Psychiatric Pharmacogenetics, Max-Planck-Institute of Psychiatry, München, Germany
| | - Marcus Ising
- Department of Molecular Psychology, Max-Planck-Institute of Psychiatry, München, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Ulrich S Zimmermann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Bertram Müller-Myhsok
- Department of Statistical Genetics, Max-Planck-Institute of Psychiatry, München, Germany,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany,Institute of Translational Medicine Liverpool, University of Liverpool, Liverpool, UK
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University Medical Center Mannheim, University of Heidelberg, J5, Mannheim 68159, Germany, Tel: +49 621 1703 6051, Fax: +49 621 1703 6055, E-mail:
| |
Collapse
|
3
|
Lari P, Rashedinia M, Abnous K, Hosseinzadeh H. Alteration of protein profile in rat liver of animals exposed to subacute diazinon: A proteomic approach. Electrophoresis 2014; 35:1419-27. [DOI: 10.1002/elps.201300475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Parisa Lari
- Department of Pharmacodynamy and Toxicology; School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Marzieh Rashedinia
- Department of Pharmacodynamy and Toxicology; School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Khalil Abnous
- Department of Pharmacodynamy and Toxicology; School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology; School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
4
|
Wang Y, Kou Y, Wang X, Cederbaum A, Wang R. Multifactorial comparative proteomic study of cytochrome P450 2E1 function in chronic alcohol administration. PLoS One 2014; 9:e92504. [PMID: 24658151 PMCID: PMC3962406 DOI: 10.1371/journal.pone.0092504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022] Open
Abstract
With the use of iTRAQ technique, a multifactorial comparative proteomic study can be performed. In this study, to obtain an overview of ethanol, CYP2E1 and gender effects on liver injury and gain more insight into the underlying molecular mechanism, mouse liver proteomes were quantitatively analyzed using iTRAQ under eight conditions including mice of different genders, wild type versus CYP2E1 knockout, and normal versus alcohol diet. A series of statistical and bioinformatic analyses were explored to simplify and clarify multifactorial comparative proteomic data. First, with the Principle Component analysis, six proteins, CYP2E1, FAM25, CA3, BHMT, HIBADH and ECHS1, involved in oxidation reduction, energy and lipid metabolism and amino acid metabolism, were identified as the most differentially expressed gene products across all of the experimental conditions of our chronic alcoholism model. Second, hierarchical clustering analysis showed CYP2E1 knockout played a primary role in the overall differential protein expression compared with ethanol and gender factors. Furthermore, pair-wise multiple comparisons have revealed that the only significant expression difference lied in wild-type and CYP2E1 knockout mice both treated with ethanol. Third, K-mean clustering analysis indicated that the CYP2E1 knockout had the reverse effect on ethanol induced oxidative stress and lipid oxidation. More importantly, IPA analysis of proteomic data inferred that the gene expressions of two upstream regulators, NRF2 and PPARα, regulated by chronic alcohol feeding and CYP2E1 knockout, are involved in ethanol induced oxidative stress and lipid oxidation. The present study provides an effectively comprehensive data analysis strategy to compare multiple biological factors, contributing to biochemical effects of alcohol on the liver. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with data set identifier of PXD000635.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Kou
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiaodong Wang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arthur Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yamada M, Satoh M, Seimiya M, Sogawa K, Itoga S, Tomonaga T, Nomura F. Combined proteomic analysis of liver tissue and serum in chronically alcohol-fed rats. Alcohol Clin Exp Res 2012; 37 Suppl 1:E79-87. [PMID: 23083309 DOI: 10.1111/j.1530-0277.2012.01883.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/16/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Proteomic approaches may provide new insights into pathological conditions associated with alcoholism. The aim of this study was to conduct a proteomic analysis of liver tissue and serum in chronically alcohol-fed rats using agarose 2-dimensional gel electrophoresis (2-DE) and 3-step serum proteome analysis. METHODS A total of 12 rats were pair-fed nutritionally adequate liquid diet containing ethanol as 36% of the total energy or an isocaloric control diet for 2 months. Rat liver homogenates and cytosol fractions were subjected to agarose 2-DE. Serum samples were subjected to 3-step serum proteome analysis involving immunodepletion of abundant proteins followed by fractionation using reverse-phase high-performance liquid chromatography and 1-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Candidate proteins were digested with trypsin and identified using mass spectrometry. Observed differences in protein expression levels were confirmed using Western blotting. RESULTS A total of 46 protein spots were found to be differentially expressed in the liver homogenates and cytosol fractions of alcohol-fed rats relative to pair-fed controls. The most notable change was down-regulation of a 29-kDa protein, which was subsequently identified as carbonic anhydrase III (CA III). Down-regulation of this protein in alcohol-fed rats was confirmed by Western blotting. The messenger RNA level of CA III was decreased as well. In rat serum, a total of 41 proteins were differentially expressed. Of these proteins, only betaine-homocysteine methyltransferase (BHMT) was also found to be differentially expressed in the liver. CONCLUSIONS A combined proteomic analysis of liver tissue and serum in chronically alcohol-fed rats revealed that the expression of CA III is significantly down-regulated in the liver of alcohol-fed rats. Our results also showed that BHMT expression is up-regulated in both the liver and serum of alcohol-fed rats.
Collapse
Affiliation(s)
- Mako Yamada
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Moro S, Chipman JK, Antczak P, Turan N, Dekant W, Falciani F, Mally A. Identification and Pathway Mapping of Furan Target Proteins Reveal Mitochondrial Energy Production and Redox Regulation as Critical Targets of Furan Toxicity. Toxicol Sci 2012; 126:336-52. [DOI: 10.1093/toxsci/kfs005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Pochareddy S, Edenberg HJ. Chronic alcohol exposure alters gene expression in HepG2 cells. Alcohol Clin Exp Res 2011; 36:1021-33. [PMID: 22150570 DOI: 10.1111/j.1530-0277.2011.01677.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The liver is the primary site of alcohol metabolism and is highly vulnerable to injuries due to chronic alcohol abuse. Several molecular mechanisms, including oxidative stress and altered cellular metabolism, have been implicated in the development and progression of alcoholic liver disease. We sought to gain further insight into the molecular pathogenesis by studying the effects of ethanol exposure on the global gene expression in HepG2 cells. METHODS HepG2 cells were cultured in the presence or absence of 75 mM ethanol for 9 days, with fresh media daily. Global gene expression changes were studied using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays. Gene expression differences were validated for 13 genes by quantitative real-time RT-PCR. To identify biological pathways affected by ethanol treatment, differentially expressed genes were analyzed by Ingenuity Pathway Analysis software. RESULTS Long-term ethanol exposure altered the expression of 1,093 genes (false discovery rate ≤ 3%); many of these changes were modest. Long-term ethanol exposure affected several pathways, including acute phase response, amino acid metabolism, carbohydrate metabolism, and lipid metabolism. CONCLUSIONS Global measurements of gene expression show that a large number of genes are affected by chronic ethanol, although most show modest effect. These data provide insight into the molecular pathology resulting from extended alcohol exposure.
Collapse
Affiliation(s)
- Sirisha Pochareddy
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
| | | |
Collapse
|
8
|
Strat YL, Ramoz N, Schumann G, Gorwood P. Molecular genetics of alcohol dependence and related endophenotypes. Curr Genomics 2011; 9:444-51. [PMID: 19506733 PMCID: PMC2691669 DOI: 10.2174/138920208786241252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/22/2022] Open
Abstract
Alcohol dependence is a worldwide public health problem, and involves both environmental and genetic vulnerability factors. The heritability of alcohol dependence is rather high, ranging between 50% and 60%, although alcohol dependence is a polygenic, complex disorder. Genome-wide scans on large cohorts of multiplex families, including the collaborative study on genetics of alcoholism (COGA), emphasized the role of many chromosome regions and some candidate genes. The genes encoding the alcohol-metabolizing enzymes, or those involved in brain reward pathways, have been involved. Since dopamine is the main neurotransmitter in the reward circuit, genes involved in the dopaminergic pathway represent candidates of interest. Furthermore, gamma-amino-butyric acid (GABA) neurotransmitter mediates the acute actions of alcohol and is involved in withdrawal symptomatology. Numerous studies showed an association between variants within GABA receptors genes and the risk of alcohol dependence. In accordance with the complexity of the “alcohol dependence” phenotype, another field of research, related to the concept of endophenotypes, received more recent attention. The role of vulnerability genes in alcohol dependence is therefore re-assessed focusing on different phenotypes and endophenotypes. The latter include brain oscillations, EEG alpha and beta variants and alpha power, and amplitude of P300 amplitude elicited from a visual oddball task. Recent enhancement on global characterizations of the genome by high-throughput approach for genotyping of polymorphisms and studies of transcriptomics and proteomics in alcohol dependence is also reviewed.
Collapse
Affiliation(s)
- Yann L Strat
- INSERM U675, IFR02, Université Paris 7, 16 Rue Henri Huchard, 75018 Paris, France
| | | | | | | |
Collapse
|
9
|
Azarashvili TS, Odinokova IV, Krestinina OV, Baburina YL, Grachev DE, Teplova VV, Holmuhamedov EL. Role of phosphorylation of porin (VDAC) in regulation of mitochondrial outer membrane under normal conditions and alcohol intoxication. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2011. [DOI: 10.1134/s1990747811010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Vattemi G, Mechref Y, Marini M, Tonin P, Minuz P, Grigoli L, Guglielmi V, Klouckova I, Chiamulera C, Meneguzzi A, Di Chio M, Tedesco V, Lovato L, Degan M, Arcaro G, Lechi A, Novotny MV, Tomelleri G. Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement. Mol Cell Proteomics 2010; 10:M110.002964. [PMID: 21156839 DOI: 10.1074/mcp.m110.002964] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress.
Collapse
Affiliation(s)
- Gaetano Vattemi
- Department of Neurological Sciences and Vision, Section of Clinical Neurology, University of Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The hepatocyte cytoskeleton consists of three filamentous networks: microtubules, actin microfilaments and keratin intermediate filaments. Because of the abundance of the proteins that comprise each system and the central role each network plays in a variety of cellular processes, the three filament systems have been the focus of a host of studies aimed at understanding the progression of alcohol-induced liver injury. In this review, we will briefly discuss the hepatic organization of each cytoskeletal network and highlight some components of each system. We will also describe what is known about ethanol-induced changes in the dynamics and distributions of each cytoskeletal system and discuss what is known about changes in protein expression levels and post-translational modifications. Finally, we will describe the possible consequences of these cytoskeletal alterations on hepatocyte function and how they might contribute to the progression of liver disease.
Collapse
|
12
|
An JH, Kim DS, Lee YH, Ho JN, Kim HK, Kang OJ, Shin IS, Cho HY. Proteomic analysis of the protective effects of Platycodi Radix in liver of chronically alcoholic rats. J Med Food 2010; 12:1190-8. [PMID: 20041771 DOI: 10.1089/jmf.2009.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we examined the effect of Platycodi Radix (PR) supplementation in chronically alcoholic rats. Sprague-Dawley rats were divided into three groups: control group (no alcohol), alcohol group (36.8% of total calories), and 0.3% PR group. The levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased by alcohol treatment, and PR supplementation normalized the AST level. Moreover, alcohol-induced cytochrome P450 2E1 was decreased by PR treatment. Proteomic analysis of liver tissues of alcohol-exposed rats and PR-supplemented rats revealed that 50 different proteins functionally characterized as involved with cytoskeleton regulation, signal transduction, cytokine, apoptosis, and reactive oxygen species metabolism showed significant quantitative changes. The expression levels of glutathione S-transferase mu, Bcl-2-like protein, and peroxiredoxin IV were decreased in the alcoholic group, whereas the levels of these proteins were increased more than threefold in the PR group. However, the expression levels of smooth muscle actin, cytochrome P450 2D, mitogen-activated protein kinase 8, and 3alpha-hydroxysteroid dehydrogenase were increased in the alcohol group and were decreased in the PR group. These data suggest that the antioxidant enzymes may play a protective role against alcohol-induced damage via oxidative stress defense mechanisms induced by PR supplementation.
Collapse
Affiliation(s)
- Jeung Hee An
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Scaloni A, Codarin E, Di Maso V, Arena S, Renzone G, Tiribelli C, Quadrifoglio F, Tell G. Modern strategies to identify new molecular targets for the treatment of liver diseases: The promising role of Proteomics and Redox Proteomics investigations. Proteomics Clin Appl 2009; 3:242-62. [DOI: 10.1002/prca.200800169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Indexed: 12/16/2022]
|
14
|
Rajaseger G, Lim CL, Wui LK, Saravanan P, Tang K, Gopalakrishnakone P, Pen-Huat YE, Lu J, Shabbir MM. A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment. Proteome Sci 2009; 7:1. [PMID: 19126242 PMCID: PMC2626589 DOI: 10.1186/1477-5956-7-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 01/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches. RESULTS The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin. CONCLUSION The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.
Collapse
Affiliation(s)
- Ganapathy Rajaseger
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Chin Leong Lim
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Lee Koon Wui
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Padmanabhan Saravanan
- Department of Anatomy (MD10), Venom and Toxin Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Lower Kent Ridge Road 117597, Singapore
| | - Kai Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Ponnampalam Gopalakrishnakone
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore.,Department of Anatomy (MD10), Venom and Toxin Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Lower Kent Ridge Road 117597, Singapore
| | - Yap Eric Pen-Huat
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Jia Lu
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Moochhala M Shabbir
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| |
Collapse
|
15
|
Hargreaves GA, Quinn H, Kashem MA, Matsumoto I, McGregor IS. Proteomic Analysis Demonstrates Adolescent Vulnerability to Lasting Hippocampal Changes Following Chronic Alcohol Consumption. Alcohol Clin Exp Res 2009; 33:86-94. [DOI: 10.1111/j.1530-0277.2008.00814.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Mann B, Madera M, Sheng Q, Tang H, Mechref Y, Novotny MV. ProteinQuant Suite: a bundle of automated software tools for label-free quantitative proteomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3823-3834. [PMID: 18985620 DOI: 10.1002/rcm.3781] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In simplifying the evaluation and quantification of high-throughput label-free quantitative proteomic data, we introduce ProteinQuant Suite. It comprises three standalone complementary computer utilities, namely ProtParser, ProteinQuant, and Turbo RAW2MGF. ProtParser is a filtering utility designed to evaluate database search results. Filtering is performed according to different criteria that are defined by the end-user. ProteinQuant then utilizes this parsed list of peptides and proteins in conjunction with mzXML or mzData files generated from the raw files for quantification. This quantification is based on the automatic detection and integration of chromatographic peaks representative of the liquid chromatography/mass spectrometry (LC/MS) elution profiles of identified peptides. Turbo RAW2MGF was developed to extend the applicability of ProteinQuant Suite to data collected from different types of mass spectrometers. It directly processes raw data files generated by Xcalibur, a ThermoElectron data acquisition software, and generates a MASCOT generic file (MGF). This file format is needed since the protein identification results generated by the database search employing this file format include information required for the precise identification and quantification of chromatographic peaks. The performance of ProteinQuant Suite was initially validated using LC/MS/MS generated for a mixture of standard proteins as well as standard proteins spiked in a complex biological matrix such as blood serum. Automated quantification of the collected data resulted in calibration curves with R(2) values higher than 0.95 with linearity spanning over more than 2 orders of magnitude with peak quantification reproducibility better than 15% (RSD). ProteinQuant Suite was also applied to confirm the binding preference of standard glycoproteins to Con A lectin using a sample consisting of both standard glycoproteins and proteins.
Collapse
Affiliation(s)
- Benjamin Mann
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
17
|
Shi L, Wang Y, Tu S, Li X, Sun M, Srivastava S, Xu N, Bhatnagar A, Liu S. The responses of mitochondrial proteome in rat liver to the consumption of moderate ethanol: the possible roles of aldo-keto reductases. J Proteome Res 2008; 7:3137-45. [PMID: 18597514 DOI: 10.1021/pr700853j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large body of evidence supports the view that mitochondria are a primary target of alcohol stress. Changes in mitochondrial proteins due to moderate ethanol intake, however, have not been broadly and accurately estimated. For this study, rats were fed low doses of ethanol and the mitochondria were isolated from heart, kidney, and liver, using ultracentrifugation with Nycodenz density gradient. The mitochondrial proteins were well resolved upon two-dimensional electrophoresis (2DE), and the alcohol-responsive 2DE spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Compared with the control group, the proteins extracted from liver mitochondria of ethanol-fed rats exhibited the significant changes on 2DE images, whereas the 2DE images obtained from the kidney and the heart mitochondria remained almost unchanged by ethanol feeding. Significantly, over 50% of the alcohol-responsive proteins in liver mitochondria were members of aldo-keto reductase family (AKR), which were usually present in cytoplasm. The organelle distributions of AKR proteins in liver mitochondria were further confirmed by Western blot analysis as well as by confocal microscopy. In addition, translocations of AKR were examined in the CHANG cell line, which was cultured with and without ethanol. The results of Western blot strongly suggested that the abundances of AKR proteins in the mitochondria were greatly reduced by the presence of ethanol in culture medium. The results of this study show that, even with moderate ethanol feeding, the mitochondrial proteome in rat liver was more sensitive to alcohol stress than that of either the kidney or the heart. The translocation of AKR proteins may be involved in the detoxification of liver cells.
Collapse
Affiliation(s)
- Liang Shi
- Beijing Genomics Institute, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nomura F, Tomonaga T, Sogawa K, Wu D, Ohashi T. Application of proteomic technologies to discover and identify biomarkers for excessive alcohol consumption: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 855:35-41. [PMID: 17561455 DOI: 10.1016/j.jchromb.2007.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 05/16/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Since currently available markers of alcohol abuse are not satisfactory, searches for novel markers are warranted. Proteomic analyses are promising tools to discover and identify novel biomarkers. Using two different proteomic technologies, surface enhanced laser desorption/ionization time-of-flight mass spectrometry and agarose fluorescent two-dimensional difference gel electrophoresis, we could detect and identify a total of 11 potential biomarkers of excessive alcohol consumption. It was noteworthy that the down regulation of the 5.9 kDa protein fragment was consistently seen in habitual drinkers and the diagnostic efficiency was greater than those of conventional markers such as gamma glutamyl transferase and carbohydrate deficient transferrin.
Collapse
Affiliation(s)
- Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University and Division of Laboratory Medicine, Clinical Genetics and Clinical Proteomics, Chiba University Hospital, Chiba City, Chiba, Japan.
| | | | | | | | | |
Collapse
|
19
|
Alley WR, Mechref Y, Klouckova I, Novotny MV. Improved Collision-Induced Dissociation Analysis of Peptides by Matrix-Assisted Laser Desorption/Ionization Tandem Time-of-Flight Mass Spectrometry through 3-Sulfobenzoic Acid Succinimidyl Ester Labeling. J Proteome Res 2006; 6:124-32. [PMID: 17203956 DOI: 10.1021/pr0602747] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sulfonation reagent, a succinimidyl ester of 3-sulfobenzoic acid, has been synthesized for effective peptide sequencing. It is capable of incorporating an additional mobile proton into the peptide backbone, thus, facilitating efficient collision-induced dissociation. This reagent is easily and inexpensively prepared in short time. Tandem mass spectra of the guanidinated and reagent-sulfonated peptides consist mainly of the y-ion series with higher intensities than those observed for solely guanidinated peptides. These enhanced tandem MS attributes significantly improved MASCOT total-ion scores, thus, allowing more confident peptide sequencing. This derivatization was also very effective for the analysis of tryptic digest of human blood serum proteins separated by two-dimensional gel electrophoresis. When used in LC-MALDI/MS/MS format, this type of derivatization does not adversely affect chromatographic efficiencies.
Collapse
Affiliation(s)
- William R Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Techniques for high-throughput measurement of protein expression and posttranslational modification are just beginning to be applied to alcohol research. Studies using this proteomic approach to examine tissue from alcoholic humans and alcohol-exposed nonhuman primates have appeared in the last year. In the present issue of Alcohol, Bell et al. present the first such analysis of brain protein expression in relation to alcohol drinking in rodents. This study found changes in several interesting classes of proteins, including molecules involved in vesicular neurotransmitter release, cellular metabolism, and cell structure. These new and exciting findings are discussed in relation to the proteomics studies in primates, and the future of proteomics in the alcohol research field.
Collapse
|