1
|
Hilchey SP, Palshikar MG, Emo JA, Li D, Garigen J, Wang J, Mendelson ES, Cipolla V, Thakar J, Zand MS. Cyclosporine a directly affects human and mouse b cell migration in vitro by disrupting a hIF-1 αdependent, o 2 sensing, molecular switch. BMC Immunol 2020; 21:13. [PMID: 32183695 PMCID: PMC7079363 DOI: 10.1186/s12865-020-0342-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 02/27/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hypoxia is a potent molecular signal for cellular metabolism, mitochondrial function, and migration. Conditions of low oxygen tension trigger regulatory cascades mediated via the highly conserved HIF-1 α post-translational modification system. In the adaptive immune response, B cells (Bc) are activated and differentiate under hypoxic conditions within lymph node germinal centers, and subsequently migrate to other compartments. During migration, they traverse through changing oxygen levels, ranging from 1-5% in the lymph node to 5-13% in the peripheral blood. Interestingly, the calcineurin inhibitor cyclosporine A is known to stimulate prolyl hydroxylase activity, resulting in HIF-1 α destabilization and may alter Bc responses directly. Over 60% of patients taking calcineurin immunosuppressant medications have hypo-gammaglobulinemia and poor vaccine responses, putting them at high risk of infection with significantly increased morbidity and mortality. RESULTS We demonstrate that O 2 tension is a previously unrecognized Bc regulatory switch, altering CXCR4 and CXCR5 chemokine receptor signaling in activated Bc through HIF-1 α expression, and controlling critical aspects of Bc migration. Our data demonstrate that calcineurin inhibition hinders this O 2 regulatory switch in primary human Bc. CONCLUSION This previously unrecognized effect of calcineurin inhibition directly on human Bc has significant and direct clinical implications.
Collapse
Affiliation(s)
- Shannon P Hilchey
- University of Rochester Medical CenterDivision of Nephrology, 601 Elmwood Ave., Rochester, 14642 NY USA
| | - Mukta G Palshikar
- University of RochesterBiophysics, Structural, and Computational Biology Program, 601 Elmwood Ave. - Box 675, Rochester, 14642 NY USA
| | - Jason A Emo
- University of Rochester Medical CenterDivision of Nephrology, 601 Elmwood Ave., Rochester, 14642 NY USA
| | - Dongmei Li
- University of RochesterClinical and Translational Science Institute, 265 Crittenden Blvd., Rochester, 14642 NY USA
| | - Jessica Garigen
- University of RochesterClinical and Translational Science Institute, 265 Crittenden Blvd., Rochester, 14642 NY USA
| | - Jiong Wang
- University of Rochester Medical CenterDivision of Nephrology, 601 Elmwood Ave., Rochester, 14642 NY USA
| | - Eric S Mendelson
- University of Rochester Medical CenterDivision of Nephrology, 601 Elmwood Ave., Rochester, 14642 NY USA
| | - Valentina Cipolla
- University of Rochester Medical CenterDivision of Nephrology, 601 Elmwood Ave., Rochester, 14642 NY USA
| | - Juilee Thakar
- University of RochesterDepartment of Microbiology and Immunology, 601 Elmwood Ave - Box 672, Rochester, 14642 NY USA
- University of RochesterDepartment of Biostatistics and Computational Biology, 265 Crittenden Blvd., Rochester, 14642 NY USA
| | - Martin S Zand
- University of Rochester Medical CenterDivision of Nephrology, 601 Elmwood Ave., Rochester, 14642 NY USA
- University of RochesterClinical and Translational Science Institute, 265 Crittenden Blvd., Rochester, 14642 NY USA
| |
Collapse
|
2
|
Smith CJ, Perfetti TA. In vitro cobalt-stimulated hypoxia-inducible factor-1 overexpression does not correlate with cancer risk from cobalt exposure in humans. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319850167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Carr J Smith
- Albemarle Corporation, Mobile, AL, USA
- Department of Nurse Anesthesia, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
3
|
|
4
|
Dick JM. Chemical composition and the potential for proteomic transformation in cancer, hypoxia, and hyperosmotic stress. PeerJ 2017; 5:e3421. [PMID: 28603672 PMCID: PMC5463988 DOI: 10.7717/peerj.3421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
The changes of protein expression that are monitored in proteomic experiments are a type of biological transformation that also involves changes in chemical composition. Accompanying the myriad molecular-level interactions that underlie any proteomic transformation, there is an overall thermodynamic potential that is sensitive to microenvironmental conditions, including local oxidation and hydration potential. Here, up- and down-expressed proteins identified in 71 comparative proteomics studies were analyzed using the average oxidation state of carbon (ZC) and water demand per residue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O), calculated using elemental abundances and stoichiometric reactions to form proteins from basis species. Experimental lowering of oxygen availability (hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O of up-expressed compared to down-expressed proteins. This correspondence of chemical composition with experimental conditions provides evidence for attraction of the proteomes to a low-energy state. An opposite compositional change, toward higher average oxidation or hydration state, is found for proteomic transformations in colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells. Calculations of chemical affinity were used to estimate the thermodynamic potentials for proteomic transformations as a function of fugacity of O2 and activity of H2O, which serve as scales of oxidation and hydration potential. Diagrams summarizing the relative potential for formation of up- and down-expressed proteins have predicted equipotential lines that cluster around particular values of oxygen fugacity and water activity for similar datasets. The changes in chemical composition of proteomes are likely linked with reactions among other cellular molecules. A redox balance calculation indicates that an increase in the lipid to protein ratio in cancer cells by 20% over hypoxic cells would generate a large enough electron sink for oxidation of the cancer proteomes. The datasets and computer code used here are made available in a new R package, canprot.
Collapse
|
5
|
Filareti M, Luotti S, Pasetto L, Pignataro M, Paolella K, Messina P, Pupillo E, Filosto M, Lunetta C, Mandrioli J, Fuda G, Calvo A, Chiò A, Corbo M, Bendotti C, Beghi E, Bonetto V. Decreased Levels of Foldase and Chaperone Proteins Are Associated with an Early-Onset Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:99. [PMID: 28428745 PMCID: PMC5382314 DOI: 10.3389/fnmol.2017.00099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive upper and lower motor neuron degeneration. One of the peculiar clinical characteristics of ALS is the wide distribution in age of onset, which is probably caused by different combinations of intrinsic and exogenous factors. We investigated whether these modifying factors are converging into common pathogenic pathways leading either to an early or a late disease onset. This would imply the identification of phenotypic biomarkers, that can distinguish the two populations of ALS patients, and of relevant pathways to consider in a therapeutic intervention. Toward this aim a differential proteomic analysis was performed in peripheral blood mononuclear cells (PBMC) from a group of 16 ALS patients with an age of onset ≤55 years and a group of 16 ALS patients with an age of onset ≥75 years, and matched healthy controls. We identified 43 differentially expressed proteins in the two groups of patients. Gene ontology analysis revealed that there was a significant enrichment in annotations associated with protein folding and response to stress. We next validated a selected number of proteins belonging to this functional group in 85 patients and 83 age- and sex-matched healthy controls using immunoassays. The results of the validation study confirmed that there was a decreased level of peptidyl-prolyl cis-trans isomerase A (also known as cyclophilin A), heat shock protein HSP 90-alpha, 78 kDa glucose-regulated protein (also known as BiP) and protein deglycase DJ-1 in PBMC of ALS patients with an early onset. Similar results were obtained in PBMC and spinal cord from two SOD1G93A mouse models with an early and late disease onset. This study suggests that a different ability to upregulate proteins involved in proteostasis, such as foldase and chaperone proteins, may be at the basis of a different susceptibility to ALS, putting forward the development of therapeutic approaches aiming at boosting the protein quality control system.
Collapse
Affiliation(s)
- Melania Filareti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy.,Department of Neurorehabilitation Sciences, Casa Cura PoliclinicoMilan, Italy
| | - Silvia Luotti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Laura Pasetto
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Mauro Pignataro
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Katia Paolella
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Paolo Messina
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Elisabetta Pupillo
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST Spedali Civili and University of BresciaBrescia, Italy
| | | | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliero Universitaria di Modena, Ospedale Civile S. Agostino-EstenseModena, Italy
| | - Giuseppe Fuda
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Andrea Calvo
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Adriano Chiò
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura PoliclinicoMilan, Italy
| | - Caterina Bendotti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Ettore Beghi
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Valentina Bonetto
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| |
Collapse
|
6
|
Dawes CS, Konig H, Lin CC. Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. J Biotechnol 2017; 248:25-34. [PMID: 28284922 DOI: 10.1016/j.jbiotec.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/19/2017] [Accepted: 03/07/2017] [Indexed: 11/30/2022]
Abstract
Hypoxia is a critical condition governing many aspects of cellular fate processes. The most common practice in hypoxic cell culture is to maintain cells in an incubator with controlled gas inlet (i.e., hypoxic chamber). Here, we describe the design and characterization of enzyme-immobilized hydrogels to create solution hypoxia under ambient conditions for in vitro cancer cell culture. Specifically, glucose oxidase (GOX) was acrylated and co-polymerized with poly(ethylene glycol)-diacrylate (PEGDA) through photopolymerization to form GOX-immobilized PEG-based hydrogels. We first evaluated the effect of soluble GOX on inducing solution hypoxia (O2<5%) and found that both unmodified and acrylated GOX could sustain hypoxia for at least 24h even under ambient air condition with constant oxygen diffusion from the air-liquid interface. However, soluble GOX gradually lost its ability to sustain hypoxia after 24h due to the loss of enzyme activity over time. On the other hand, GOX-immobilized hydrogels were able to create hypoxia within the hydrogel for at least 120h, potentially due to enhanced protein stabilization by enzyme 'PEGylation' and immobilization. As a proof-of-concept, this GOX-immobilized hydrogel system was used to create hypoxia for in vitro culture of Molm14 (acute myeloid leukemia (AML) cell line) and Huh7 (hepatocellular carcinoma (HCC) cell line). Cells cultured in the presence of GOX-immobilized hydrogels remained viable for at least 24h. The expression of hypoxia associated genes, including carbonic anhydrase 9 (CA9) and lysyl oxidase (LOX), were significantly upregulated in cells cultured with GOX-immobilized hydrogels. These results have demonstrated the potential of using enzyme-immobilized hydrogels to create hypoxic environment for in vitro cancer cell culture.
Collapse
Affiliation(s)
- Camron S Dawes
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Heiko Konig
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Revisiting cobalt chloride preconditioning to prevent hypobaric hypoxia-induced damage: identification of global proteomic alteration and key networks. Funct Integr Genomics 2016; 16:281-95. [PMID: 26882918 DOI: 10.1007/s10142-016-0483-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/24/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Several studies have supported the hypoxia mimetic roles and cytoprotective properties of cobalt chloride in vitro and in vivo. However, a clear understanding of biological process-based mechanism that integrates the available information remains unknown. This study was aimed to explore the potential mechanism of cobalt chloride deciphering its benefits and well-known physiological challenge caused by hypobaric hypoxia that reportedly affects nearly 24 % of the global population. In order to explore the mechanism of CoCl2, we used global proteomic and systems biology approach in rat model to provide a deeper insight into molecular mechanisms of preconditioning. Furthermore, key conclusions were drawn based on biological network analysis and their enrichment with ontological overlaps. The study was further strengthened by consistent identification of validation of proteins using immunoblotting. CoCl2-pretreated animals exposed to hypoxia showed two significant networks, one lipid metabolism and other cell cycle associated, with a total score of 23 and eight focus molecules. In this study, we delineated two primary routes: one, by direct modulation of reactive oxygen species metabolism and, second, by regulation of lipid metabolism which was not known until now. The previously known benefits of cobalt chloride during physiological challenge by hypobaric hypoxia are convincing and could be explained by some basic set of metabolic and molecular reorganization within the hypoxia model. Interestingly, we also observed some of the completely unknown roles of cobalt chloride such as regulation of lipid that could undulate the translational roles of cobalt chloride supplementation beyond hypoxia preconditioning.
Collapse
|
8
|
Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (review). Int J Mol Med 2015; 35:859-69. [PMID: 25625467 PMCID: PMC4356629 DOI: 10.3892/ijmm.2015.2079] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
Mammals have developed evolutionarily conserved programs of transcriptional response to hypoxia and inflammation. These stimuli commonly occur together in vivo and there is significant crosstalk between the transcription factors that are classically understood to respond to either hypoxia or inflammation. This crosstalk can be used to modulate the overall response to environmental stress. Several common disease processes are characterised by aberrant transcriptional programs in response to environmental stress. In this review, we discuss the current understanding of the role of the hypoxia-responsive (hypoxia-inducible factor) and inflammatory (nuclear factor-κB) transcription factor families and their crosstalk in rheumatoid arthritis, inflammatory bowel disease and colorectal cancer, with relevance for future therapies for the management of these conditions.
Collapse
Affiliation(s)
- John Biddlestone
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
9
|
A prolyl-hydroxylase inhibitor, ethyl-3,4-dihydroxybenzoate, induces cell autophagy and apoptosis in esophageal squamous cell carcinoma cells via up-regulation of BNIP3 and N-myc downstream-regulated gene-1. PLoS One 2014; 9:e107204. [PMID: 25232961 PMCID: PMC4169646 DOI: 10.1371/journal.pone.0107204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022] Open
Abstract
The protocatechuic acid ethyl ester ethyl-3,4-dihydroxybenzoate is an antioxidant found in the testa of peanut seeds. Previous studies have shown that ethyl-3,4-dihydroxybenzoate can effectively reduce breast cancer cell metastasis by inhibiting prolyl-hydroxylase. In this study, we investigated the cytotoxic effect of ethyl-3,4-dihydroxybenzoate on esophageal squamous cell carcinoma cells in vitro and identified key regulators of ethyl-3,4-dihydroxybenzoate-induced esophageal cancer cell death through transcription expression profiling. Using flow cytometry analysis, we found that ethyl-3,4-dihydroxybenzoate induced S phase accumulation, a loss in mitochondrial membrane permeabilization, and caspase-dependent apoptosis. Moreover, an expression profile analysis identified 46 up- and 9 down-regulated genes in esophageal cancer KYSE 170 cells treated with ethyl-3,4-dihydroxybenzoate. These differentially expressed genes are involved in several signaling pathways associated with cell cycle regulation and cellular metabolism. Consistent with the expression profile results, the transcriptional and protein expression levels of candidate genes NDRG1, BNIP3, AKR1C1, CCNG2 and VEGFA were found to be significantly increased in treated KYSE 170 cells by reverse-transcription PCR and western blot analysis. We also found that protein levels of hypoxia-inducible factor-1α, BNIP3, Beclin and NDRG1 were increased and that enriched expression of BNIP3 and Beclin caused autophagy mediated by microtubule-associated protein 1 light chain 3 in the treated cells. Autophagy and apoptosis were activated together in esophageal cancer cells after exposed to ethyl-3,4-dihydroxybenzoate. Furthermore, knock-down of NDRG1 expression by siRNA significantly attenuated apoptosis in the cancer cells, implying that NDRG1 may be required for ethyl-3,4-dihydroxybenzoate-induced apoptosis. Together, these results suggest that the cytotoxic effects of ethyl-3,4-dihydroxybenzoate were mediated by the up-regulation of NDRG1, BNIP3, Beclin and hypoxia-inducible factor-1α, initiating BNIP3 and Beclin mediated autophagy at an early stage and ultimately resulting in esophageal cancer cell apoptosis.
Collapse
|
10
|
Fu S, Tar MT, Melman A, Davies KP. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells. FASEB J 2014; 28:3633-44. [PMID: 24803544 DOI: 10.1096/fj.13-248708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM "relaxant" pathways; excessive activation of these pathways results in priapism.
Collapse
Affiliation(s)
| | | | | | - Kelvin Paul Davies
- Department of Urology and Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
11
|
Lane DJR, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2014; 1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Mills
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nurul H Shafie
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rayan Saleh Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
12
|
Fuhrmann DC, Wittig I, Heide H, Dehne N, Brüne B. Chronic hypoxia alters mitochondrial composition in human macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2750-60. [PMID: 24140568 DOI: 10.1016/j.bbapap.2013.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/17/2013] [Accepted: 09/29/2013] [Indexed: 12/19/2022]
Abstract
Hypoxia inducible factors (HIFs) are important mediators of the cellular adaptive response during acute hypoxia. The role of HIF-1 and HIF-2 during prolonged periods of hypoxia, i.e. chronic hypoxia is less defined. Therefore, we used human THP-1 macrophages with a knockdown of either HIF-1α, HIF-2α, or both HIFα-subunits, incubated them for several days under hypoxia (1% O2), and analyzed responses to hypoxia using 2D-DIGE coupled to MS/MS-analysis. Chronic hypoxia was defined as a time point when the early but transient accumulation of HIFα-subunits and mRNA expression of classical HIF target genes returned towards basal levels, with a new steady state that was constant from 72h onwards. From roughly 800 spots, that were regulated comparing normoxia to chronic hypoxia, about 100 proteins were unambiguously assigned during MS/MS-analysis. Interestingly, a number of glycolytic proteins were up-regulated, while a number of inner mitochondrial membrane proteins were down-regulated independently of HIF-1α or HIF-2α. Chronic hypoxic conditions depleted the mitochondrial mass by autophagy, which occurred independently of HIF proteins. Macrophages tolerate periods of chronic hypoxia very well and adaptive responses occur, at least in part, independently of HIF-1α and/or HIF-2α and comprise mitophagy as a pathway of particular importance.
Collapse
|
13
|
PKCδ enhances C/EBPα degradation via inducing its phosphorylation and cytoplasmic translocation. Biochem Biophys Res Commun 2013; 433:220-5. [DOI: 10.1016/j.bbrc.2013.02.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
|
14
|
Said HM, Polat B, Stein S, Guckenberger M, Hagemann C, Staab A, Katzer A, Anacker J, Flentje M, Vordermark D. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells. World J Clin Oncol 2012; 3:104-10. [PMID: 22787578 PMCID: PMC3394081 DOI: 10.5306/wjco.v3.i7.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/10/2011] [Accepted: 06/30/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation.
METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant).
RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results.
CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.
Collapse
Affiliation(s)
- Harun M Said
- Department of Radiation Oncology, University of Wuerzburg, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
OBJECTIVES Hyperlipidemia is associated with a variety of pancreatic diseases. However, the underlying pathophysiology and molecular mechanisms between hyperlipidemia and acute pancreatitis remain undefined. Gel electrophoresis and mass spectrometry can be used in proteomic analysis to elucidate these mechanisms. METHODS A comparative proteomic analysis was conducted to identify proteins that were altered in pancreases of hyperlipidemic acute necrotic pancreatitis rats compared with those of normal-lipid acute necrotic pancreatitis rats. A comparative proteomic approach using a hyperlipidemic rat model was used. RESULTS Thirty-nine differentially expressed proteins were significantly changed in pancreatic samples from hyperlipidemic acute necrotic pancreatitis rats. Differentially expressed proteins in hyperlipidemic pancreatitis include pancreatic proteolytic enzymes, such as lipase, amylase, carboxypolypeptidase, and α-1-antiproteinase; endoplasmic reticulum stress-related proteins; and calcium influx-related proteins including protein disulfide isomerase, calreticulin, annexin A, glucose-regulated protein 78, heat shock protein 60, and peroxiredoxin. Other proteins associated with DNA replication and damage repair, apoptosis, cell metabolism, circulatory dysfunction, and signal transduction were identified in hyperlipidemic pancreatitis. CONCLUSIONS Hyperlipidemia intensifies acute necrotic pancreatitis through various ways. These enzymes may be putative biomarkers of hyperlipidemic acute necrotic pancreatitis.
Collapse
|
16
|
Zhang W, Wang XP, Yu ZW, Wang LS, Zhu Y, Yu XF, Wu K, Zeng Y, Xu MY. Hyperlipidemic versus healthy pancreases: a proteomic analysis using an animal model. IUBMB Life 2011; 62:781-9. [PMID: 20981735 DOI: 10.1002/iub.384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hyperlipidemia is associated with a variety of pancreatic diseases; however, the underlying pathophysiology and molecular mechanisms remain undefined. Here, we performed a comparative proteomic analysis of pancreatic tissue obtained from hyperlipidemic rats to identify proteins that may be involved in mediating hyperlipidemia-associated pancreatic injury. Rats were fed a high-fat diet to induce hyperlipidemia. Control rats were fed a diet with normal fat content. Pancreatic tissue samples were obtained after 6 or 12 weeks and comparative proteomic analysis, using gel electrophoresis and mass spectrometry, was conducted to identify proteins, the expression of which were altered in pancreases from hyperlipidemic compared with control rat pancreases. The expression levels of 3 of 13 proteins were significantly altered in pancreatic samples from hyperlipidemic rats. Alpha-amylase and arginase II were dysregulated by more than twofold. These modulations persisted in pancreatic tissue obtained from late-stage hyperlipidemic rats. The levels of alpha-amylase and arginase II were significantly altered in pancreases obtained from rats with hyperlipidemia. These enzymes may be putative biomarkers of hyperlipidemia-mediated pancreatic injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Hua Dong Hospital, Fu Dan University School of Medical Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Active compounds-based discoveries about the differentiation and apoptosis of leukemic cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Liao SH, Zhao XY, Han YH, Zhang J, Wang LS, Xia L, Zhao KW, Zheng Y, Guo M, Chen GQ. Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells. Proteomics 2009; 9:3901-12. [PMID: 19637235 DOI: 10.1002/pmic.200800922] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), consisting of oxygen-sensitive HIF-1alpha and constitutively expressed HIF-1beta subunits, is a master transcriptional activator for cellular response to hypoxia. To explore direct HIF-1 targets, here we used differential gel electrophoresis (DIGE) to compare the HIF-1-regulated proteins between leukemic U937T-cell line with and without conditional induction of HIF-1alpha protein by tetracycline-off system. Among the upregulated proteins identified, mRNA levels of annexin A1, macrophage-capping protein (CapG), S100 calcium-binding protein A4 (S100A4), S100A11, acyl-CoA-binding protein and calcyclin-binding protein also increased. The expressions of the annexin A1, CapG and S100A4 genes were significantly induced by hypoxia in five adherent cell lines tested besides U937 cells, while their expressions were blocked by the short hairpin RNA specifically against HIF-1alpha. Further luciferase reporter assay and chromatin immunoprecipitation showed that HIF-1alpha directly bound to three hypoxia-responsive elements located at intron 1 of S100A4 gene and hypoxia-responsive element at -350 to -346 of CapG gene, which are essential for HIF-1-induced expression. Additionally, the role of S100A4 expression in migration and invasion of cancer cells were also confirmed. These findings would provide new sights for understanding the molecular mechanisms underlying HIF-1 action.
Collapse
Affiliation(s)
- Shi-Hua Liao
- Institute of Health Sciences, Chinese Academy of Sciences/Shanghai Jiao-Tong University School of Medicine, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Antonov AV, Dietmann S, Rodchenkov I, Mewes HW. PPI spider: a tool for the interpretation of proteomics data in the context of protein-protein interaction networks. Proteomics 2009; 9:2740-9. [PMID: 19405022 DOI: 10.1002/pmic.200800612] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent advances in experimental technologies allow for the detection of a complete cell proteome. Proteins that are expressed at a particular cell state or in a particular compartment as well as proteins with differential expression between various cells states are commonly delivered by many proteomics studies. Once a list of proteins is derived, a major challenge is to interpret the identified set of proteins in the biological context. Protein-protein interaction (PPI) data represents abundant information that can be employed for this purpose. However, these data have not yet been fully exploited due to the absence of a methodological framework that can integrate this type of information. Here, we propose to infer a network model from an experimentally identified protein list based on the available information about the topology of the global PPI network. We propose to use a Monte Carlo simulation procedure to compute the statistical significance of the inferred models. The method has been implemented as a freely available web-based tool, PPI spider (http://mips.helmholtz-muenchen.de/proj/ppispider). To support the practical significance of PPI spider, we collected several hundreds of recently published experimental proteomics studies that reported lists of proteins in various biological contexts. We reanalyzed them using PPI spider and demonstrated that in most cases PPI spider could provide statistically significant hypotheses that are helpful for understanding of the protein list.
Collapse
Affiliation(s)
- Alexey V Antonov
- GSF National Research Center for Environment and Health, Institute for Bioinformatics, Ingolstädter Landstrasse 1, Neuherberg, Germany.
| | | | | | | |
Collapse
|
20
|
Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L631-40. [PMID: 19592460 DOI: 10.1152/ajplung.90415.2008] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) enhances the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which contribute to the pathogenesis of hypoxic pulmonary hypertension (HPH). Previous reports have demonstrated that hypoxia upregulates ACE expression, but the underlying mechanism is unknown. Here, we found that ACE is persistently upregulated in PASMCs on the transcriptional level during hypoxia. Hypoxia-inducible factor 1alpha (HIF-1alpha), a key transcription factor activated during hypoxia, was able to upregulate ACE protein expression under normoxia, whereas knockdown of HIF-1alpha expression in PASMCs inhibited hypoxia-induced ACE upregulation. Furthermore, HIF-1alpha can bind and transactivate the ACE promoter directly. Therefore, we report that ACE is a novel target of HIF-1alpha. Recently, a homolog of ACE, ACE2, was reported to counterbalance the function of ACE. In contrast to ACE, we found that ACE2 mRNA and protein levels increased during the early stages of hypoxia and decreased to near-baseline levels at the later stages after HIF-1alpha accumulation. Thus HIF-1alpha inhibited ACE2 expression, and the accumulated ANG II catalyzed by ACE is a key mediator in the downregulation of ACE2 by HIF-1alpha. Moreover, a reduction of ACE2 expression in PASMCs by RNA interference was accompanied by significantly enhanced proliferation and migration during hypoxia. We conclude that ACE is directly regulated by HIF-1alpha, whereas ACE2 is regulated in a bidirectional way during hypoxia and may play a protective role during the development of HPH. In sum, these findings contribute to the understanding of the pathogenesis of HPH.
Collapse
Affiliation(s)
- Ruifeng Zhang
- Dept. of Respiratory Medicine, Ruijin Hospital, Medical School of Shanghai Jiaotong Univ., No. 197, Second Ruijin Rd., Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Meng C, Jin X, Xia L, Shen SM, Wang XL, Cai J, Chen GQ, Wang LS, Fang NY. Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J Proteome Res 2009; 8:2463-75. [PMID: 19265432 DOI: 10.1021/pr801059u] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction is recently thought to be tightly associated with the development of cardiac hypertrophy as well as hypertension. However, the detailed molecular events in mitochondria at early stages of hypertrophic pathogenesis are still unclear. Applying two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF tandem mass spectrometry, here we identified the changed mitochondrial proteins of left ventricular mitochondria in prehypertensive/hypertensive stages of cardiac hypertrophy through comparing spontaneously hypertensive rats (SHR) and the age-matched normotensive Wistar Kyoto (WKY) rats. The results revealed that in the hypertrophic left ventricle of SHR as early as 4 weeks old with normal blood pressure, 33 mitochondrial protein spots presented significant alterations, with 17 down-regulated and 16 up-regulated. Such alterations were much greater than those in 20-week-old SHR with elevated blood pressure. Of the total alterations, the expression of two mitochondrial enzymes, trifunctional enzyme alpha subunit (Hadha) and NADH dehydrogenase 1 alpha subcomplex 10 (Ndufa10), were found to have special expression modification patterns in SHR strain. These data would provide new clues to investigate the potential contribution of mitochondrial dysfunction to the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Chao Meng
- The Department of Geriatrics, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sørensen BS, Horsman MR, Vorum H, Honoré B, Overgaard J, Alsner J. Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics. Radiother Oncol 2009; 92:443-9. [PMID: 19541378 DOI: 10.1016/j.radonc.2009.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Solid malignant tumours are characterised by an inadequate vascular system, which can give rise to micro-regional hypoxic areas. As the negative impact of tumour hypoxia is believed largely to depend on dynamic changes in gene expression, it is important to identify the genes regulated by hypoxia to further enlighten the biology behind the cellular response to hypoxia. Previous studies have demonstrated that hypoxia has an impact not only on the gene transcription, but also on gene-specific mRNA translation. Therefore, proteomics is a suitable approach to understand the complexity of gene regulation under hypoxia at protein level. In this in vitro study we have studied the proteome of cells under intermediate hypoxia (1% O2) and anoxia and compared these to normoxic (21% O2) cells to identify proteins upregulated by mild and severe hypoxia. MATERIALS AND METHODS A human cervix cancer cell line (SiHa) and a human head and neck cancer cell line (FaDu(DD)) were used. Total cell lysate from hypoxic and normoxic cells was separated by 2-dimensional gel electrophoresis, and images were analysed using Quantity One software. Proteins from significant spots (difference in intensity by more than a factor 2) were identified by Liquid chromatography-mass spectrometry (LC-MS/MS). In order to confirm the hypoxic regulation of the identified proteins, immunoblotting and qPCR were employed when possible. RESULTS All together 32 spots were found to be upregulated in the hypoxic gels. Of these, 11 different proteins were successfully identified and largely confirmed by Western blotting and qPCR. Amongst these proteins are protein disulfide isomerase family A, member 6 (PDIA6) and dynein light chain roadblock-type 1 (DynLRB1). Both 2D gels and Western blots revealed that PDAI6 exhibited a cell line specific pattern; in FaDu(DD) there was upregulation at 1% and further upregulated at 0% compared to atmospheric air, whereas there was no upregulation in SiHa cells. DynLRB1 was found to be upregulated in FaDu(DD) at both 1% and 0% oxygen. CONCLUSIONS The upregulated proteins observed in this study are involved in different cellular processes, as regulators of both cell metabolism and stress response, and in cell migration and cell division. All of which may contribute to cell survival and adaptation during oxygen starvation.
Collapse
|
23
|
Zheng Y, Wang LS, Xia L, Han YH, Liao SH, Wang XL, Cheng JK, Chen GQ. NDRG1 is down-regulated in the early apoptotic event induced by camptothecin analogs: The potential role in proteolytic activation of PKCδ and apoptosis. Proteomics 2009; 9:2064-75. [DOI: 10.1002/pmic.200800031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Zhang J, Chen GQ. Hypoxia-HIF-1alpha-C/EBPalpha/Runx1 signaling in leukemic cell differentiation. ACTA ACUST UNITED AC 2009; 16:297-303. [PMID: 19285840 DOI: 10.1016/j.pathophys.2009.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML), a class of prevalent hematopoietic malignancies, is caused by the acquisition of gene mutations that confer deregulated proliferation, impaired differentiation and a survival advantage of hematopoietic progenitors. More recently, we reported that cobalt chloride (CoCl(2))/iron chelator desferrioxamine (DFO)-mimicked hypoxia or moderate hypoxia (2% and 3% O(2)) can directly trigger differentiation of many subtypes of AML cells. Also, intermittent hypoxia significantly prolongs the survival of the transplanted leukemic mice with differentiation induction of leukemic cells. Additionally, these hypoxia-simulating agents selectively stimulate differentiation in acute promyelocytic leukemic cells induced by arsenic trioxide, an effective second-line drug for this unique type of leukemia. Based on this interesting evidence in vitro and in vivo, the ongoing investigations showed the role of hypoxia-inducible factor-1alpha (HIF-1alpha) protein through its non-transcriptional activity in myeloid cell differentiation, as evidenced by chemical interference, the conditional HIF-1alpha induction, the specific short hairpin RNAs (shRNAs) against HIF-1alpha and HIF-1beta, an essential partner for transcription activity of HIF-1. Furthermore, HIF-1alpha and two hematopoietic transcription factors CCAAT/enhancer binding protein alpha (C/EBPalpha) and Runx1/AML1 interact directly with each other. Such interactions increase the transcriptional activities of C/EBPalpha and Runx1/AML1, while C/EBPalpha competes with HIF-1beta for direct binding to HIF-1alpha protein, and significantly inhibits the DNA-binding ability of HIF-1. As a protein is rapidly responsive to all-trans retinoic acid (ATRA), a classical clinical differentiation-inducing drug for AML, HIF-1alpha also plays a role in ATRA-induced differentiation of leukemic cells.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Institute of Health Science, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | | |
Collapse
|
25
|
Viganò A, Ripamonti M, De Palma S, Capitanio D, Vasso M, Wait R, Lundby C, Cerretelli P, Gelfi C. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics 2009; 8:4668-79. [PMID: 18937252 DOI: 10.1002/pmic.200800232] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High altitude hypoxia is a paraphysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. In man, skeletal muscle, after prolonged exposure to hypoxia, undergoes mass reduction and alterations at the cellular level featuring a reduction of mitochondrial volume density, accumulation of lipofuscin, a product of lipid peroxidation, and dysregulation of enzymes whose time course is unknown. The effects of 7-9 days exposure to 4559 m (Margherita Hut, Monte Rosa, Italy) on the muscle proteins pattern were investigated, pre- and post-exposure, in ten young subjects, by 2-D DIGE and MS. Ten milligram biopsies were obtained from the mid part of the vastus lateralis muscle at sea level (control) and at altitude, after 7-9 days hypoxia. Differential analysis indicates that proteins involved in iron transport, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and oxidative stress responses were significantly (p<0.05) decreased in hypoxia. Parenthetically, hypoxia markers such as hypoxia inducible factor 1 alpha (HIF-1alpha) and pyruvate dehydrogenase kinase 1 (PDK1) were still at the pre-hypoxia levels, whereas the mammalian target of rapamycin (mTOR), a marker of protein synthesis, was reduced.
Collapse
Affiliation(s)
- Agnese Viganò
- Department of Sciences and Biomedical Technologies, University of Milan, LITA, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen S, Han YH, Zheng Y, Zhao M, Yan H, Zhao Q, Chen GQ, Li D. NDRG1 contributes to retinoic acid-induced differentiation of leukemic cells. Leuk Res 2008; 33:1108-13. [PMID: 19046768 DOI: 10.1016/j.leukres.2008.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/17/2008] [Accepted: 10/18/2008] [Indexed: 12/21/2022]
Abstract
N-Myc downstream-regulated gene 1 (NDRG1) protein has been shown to be up-regulated during leukemic cell differentiation induced by some differentiation-inducing agents such as all-trans retinoic acid (ATRA). However, the potential role of up-regulated NDRG1 in the event is greatly unknown. In this work, we show that inducible NDRG1 expression can drive leukemic U937 cells to undergo differentiation, while the knock-down of NDRG1 expression by specific small interfering RNA significantly antagonizes ATRA-induced differentiation of leukemic cells, proposing the role of NDRG1 in leukemic cell differentiation. Furthermore, our work shows that CCAAT/enhancer-binding protein beta (C/EBPbeta) and PU.1, which are important hematopoiesis-related transcription factors, may act as downstream effectors of NDRG1 in leukemic cell differentiation. Taking together, this study provides direct evidence for the role of NDRG1 protein in myeloid leukemic cell differentiation.
Collapse
Affiliation(s)
- Su Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Luwan, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Few technological developments have created as much excitement and skepticism as proteomics over their potential to change clinical diagnostic and prognostic procedures. Proteomics concerns itself with the characterization and function of all cellular proteins, the ultimate determinants of cellular function. As such, it represents the end result of all mechanisms of gene regulation and thus offers tremendous potential for characterizing biology. In much the same way as what has occurred with the genome, the scientific community is coming to grips with the fact that the proteome, although enormously complex, is finite. It is conceivable that we will learn the identity of all possible proteins, including all posttranslational modifications. The rate of protein discovery continues to accelerate in large part because of improvements in mass spectrometry-based technologies coupled with improved genomic databases and bioinformatic tools. In addition, there is reason to believe that proteomics is on the verge of moving from a methodology that requires repeated proteome "discovery" to one that can more systematically profile proteomes. This review discusses current proteomic-based technologies and the efforts of scientists to move them into the clinic for use in patients treated with radiotherapy and other modalities.
Collapse
Affiliation(s)
- Bradly G Wouters
- Department of Radiation Oncology (Maastro Lab), GROW Research Institute, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
28
|
Wang S, Zheng Y, Yu Y, Xia L, Chen GQ, Yang YZ, Wang LS. Phosphorylation of beta-actin by protein kinase C-delta in camptothecin analog-induced leukemic cell apoptosis. Acta Pharmacol Sin 2008; 29:135-42. [PMID: 18158875 DOI: 10.1111/j.1745-7254.2008.00753.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM This study was conducted to reveal new proteins involved in acute myeloid leukemia (AML) cell apoptosis. METHODS Using camptothecin analog NSC606985- induced leukemic U937 cell apoptosis as a model, this study performed a differential proteomic analysis during apoptosis induction. The significantly modulated protein was underwent further investigation in the apoptotic process. RESULTS We found that beta-actin protein presented two different spots on the two-dimensional electrophoresis (2-DE) map, which shared similar molecular weight and different pI. Those two spots demonstrated contrary changes (disappeared on the basic-end and increased on the acid-end spot) during apoptosis induction, although the total level of beta-actin kept constant. This observation was further confirmed by immunoblot analysis on 2-DE gel. When NSC606985-treated cell lysate was incubated with alkaline phosphotase, beta-actin on the basic-end spot was restored, indicating increased phosphorylation of beta-actin during NSC606985- induced apoptosis. Moreover, the polymerization of actin also decreased after NSC606985 treatment. The increased beta-actin phosphorylation and decreased actin polymerization was antagonized by pre-treatment of rottlerin, a specific protein kinase C-delta (PKC delta) inhibitor. CONCLUSION All these results indicate that beta-actin was phosphorylated during apoptosis induction, which was mediated by activated PKC delta.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pathophysiology, Xiangya Medical College, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|