1
|
Burkovski A. Proteomics of Toxigenic Corynebacteria. Proteomes 2023; 12:2. [PMID: 38250813 PMCID: PMC10801583 DOI: 10.3390/proteomes12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Within the genus Corynebacterium, six species are potential carriers of the tox gene, which encodes the highly potent diphtheria exotoxin: Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis and Corynebacterium silvaticum. Based on their potential to infect different host species and cause either human infections, zoonotic diseases or infections of economically important animals, these bacteria are of high scientific and economic interest and different research groups have carried out proteome analyses. These showed that especially the combination of MS-based proteomics with bioinformatic tools helped significantly to elucidate the functional aspects of corynebacterial genomes and to handle the genome and proteome complexity. The combination of proteomic and bioinformatic approaches was also used to discover new vaccine and drug targets. In addition, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been established as a fast and precise tool for the identification of these bacteria.
Collapse
Affiliation(s)
- Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Kluck GEG, Wendt CHC, Imperio GED, Araujo MFC, Atella TC, da Rocha I, Miranda KR, Atella GC. Plasmodium Infection Induces Dyslipidemia and a Hepatic Lipogenic State in the Host through the Inhibition of the AMPK-ACC Pathway. Sci Rep 2019; 9:14695. [PMID: 31604978 PMCID: PMC6789167 DOI: 10.1038/s41598-019-51193-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Malaria is a major parasitic disease of humans and is a health public problem that affects more than 100 countries. In 2017, it caused nearly half a million deaths out of 219 million infections. Malaria is caused by the protozoan parasites of the genus Plasmodium and is transmitted by female mosquitoes of the genus Anopheles. Once in the bloodstream, Plasmodium merozoites invade erythrocytes and proliferate until the cells lyses and release new parasites that invade other erythrocytes. Remarkably, they can manipulate the vertebrate host's lipid metabolism pathways, since they cannot synthesize lipid classes that are essential for their development and replication. In this study, we show that mice infected with Plasmodium chabaudi present a completely different plasma profile from control mice, with marked hyperproteinemia, hypertriglyceridemia, hypoglycemia, and hypocholesterolemia. In addition, white adipose and hepatic tissue and analyses from infected animals revealed the accumulation of triacylglycerol in both tissues and free fatty acids and free cholesterol in the liver. Hepatic mRNA and protein expression of key enzymes and transcription factors involved in lipid metabolism were also altered by P. chabaudi infection, leading to a lipogenic state. The enzyme 5' AMP-activated protein kinase (AMPK), a master regulator of cell energetic metabolism, was also modulated by the parasite, which reduced AMPK phosphorylation levels upon infection. Pretreatment with metformin for 21 days followed by infection with P. chabaudi was effective in preventing infection of mice and also lowered the hepatic accumulation of lipids while activating AMPK. Together, these results provide new and important information on the specific molecular mechanisms induced by the malaria parasite to regulate hepatic lipid metabolism in order to facilitate its development, proliferation, and lifespan in its vertebrate host.
Collapse
Affiliation(s)
- George Eduardo Gabriel Kluck
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Hübner Costabile Wendt
- Laboratory of Cellular Ultrastructure Hertha Meyer, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guinever Eustaquio do Imperio
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Fernanda Carvalho Araujo
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá Correa Atella
- Laboratory of Comparative Neurobiology and Development, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella da Rocha
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Rocha Miranda
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Möller J, Kraner ME, Burkovski A. More than a Toxin: Protein Inventory of Clostridium tetani Toxoid Vaccines. Proteomes 2019; 7:proteomes7020015. [PMID: 30988272 PMCID: PMC6631180 DOI: 10.3390/proteomes7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Clostridium tetani is the etiological agent of tetanus, a life-threatening bacterial infection. The most efficient protection strategy against tetanus is a vaccination with the C. tetani neurotoxin, which is inactivated by formaldehyde-crosslinking. Since we assumed that besides the tetanus toxin, other proteins of C. tetani may also be present in toxoid preparations, we analyzed commercially available vaccines from different countries in respect to their protein content using mass spectrometry. In total 991 proteins could be identified in all five analyzed vaccines, 206 proteins were common in all analyzed vaccines and 54 proteins from the 206 proteins were potential antigens. The additionally present proteins may contribute at least partially to protection against C. tetani infection by supporting the function of the vaccine against the devastating effects of the tetanus toxin indirectly. Two different label-free protein quantification methods were applied for an estimation of protein contents. Similar results were obtained with a Total Protein Approach (TPA)-based method and Protein Discoverer 2.2 software package based on the minora algorithm. Depending on the tetanus toxoid vaccine and the quantification method used, tetanus neurotoxin contributes between 14 and 76 % to the total C. tetani protein content and varying numbers of other C. tetani proteins were detected.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Max Edmund Kraner
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Surface and Extracellular Proteome of the Emerging Pathogen Corynebacterium ulcerans. Proteomes 2018; 6:proteomes6020018. [PMID: 29673200 PMCID: PMC6027474 DOI: 10.3390/proteomes6020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Corynebacterium ulcerans is an emerging pathogen, which is increasingly recognized as an etiological agent of diphtheria, but can also evoke ulcers of the skin and systemic infections in humans. Besides man, the bacteria can colonize a wide variety of different animals, including cattle and pet animals, which might serve as a reservoir for human infections. In this study, surface-located proteins and the exoproteome of two Corynebacterium ulcerans strains were analyzed, since these may have key roles in the interaction of the pathogen with host cells. Strain 809 was isolated from a fatal case of human respiratory tract infection, while strain BR-AD22 was isolated from a nasal swap of an asymptomatic dog. While a very similar pattern of virulence factors was observed in the culture supernatant and surface protein fractions of the two strains, proteome analyses revealed a higher stability of 809 cells compared to strain BR-AD22. During exponential growth, 17% of encoded proteins of strain 809 were detectable in the medium, while 38% of the predicted proteins encoded by the BR-AD22 chromosome were found. Furthermore, the data indicate differential expression of phospholipase D and a cell wall-associated hydrolase, since these were only detected in strain BR-AD22.
Collapse
|
5
|
Dautin N, de Sousa-d'Auria C, Constantinesco-Becker F, Labarre C, Oberto J, Li de la Sierra-Gallay I, Dietrich C, Issa H, Houssin C, Bayan N. Mycoloyltransferases: A large and major family of enzymes shaping the cell envelope of Corynebacteriales. Biochim Biophys Acta Gen Subj 2016; 1861:3581-3592. [PMID: 27345499 DOI: 10.1016/j.bbagen.2016.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium and Corynebacterium are important genera of the Corynebacteriales order, the members of which are characterized by an atypical diderm cell envelope. Indeed the cytoplasmic membrane of these bacteria is surrounded by a thick mycolic acid-arabinogalactan-peptidoglycan (mAGP) covalent polymer. The mycolic acid-containing part of this complex associates with other lipids (mainly trehalose monomycolate (TMM) and trehalose dimycolate (TDM)) to form an outer membrane. The metabolism of mycolates in the cell envelope is governed by esterases called mycoloyltransferases that catalyze the transfer of mycoloyl chains from TMM to another TMM molecule or to other acceptors such as the terminal arabinoses of arabinogalactan or specific polypeptides. In this review we present an overview of this family of Corynebacteriales enzymes, starting with their expression, localization, structure and activity to finally discuss their putative functions in the cell. In addition, we show that Corynebacteriales possess multiple mycoloyltransferases encoding genes in their genome. The reason for this multiplicity is not known, as their function in mycolates biogenesis appear to be only partially redundant. It is thus possible that, in some species living in specific environments, some mycoloyltransferases have evolved to gain some new functions. In any case, the few characterized mycoloyltransferases are very important for the bacterial physiology and are also involved in adaptation in the host where they constitute major secreted antigens. Although not discussed in this review, all these functions make them interesting targets for the discovery of new antibiotics and promising vaccines candidates. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Nathalie Dautin
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Célia de Sousa-d'Auria
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Florence Constantinesco-Becker
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Cécile Labarre
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Jacques Oberto
- Cell Biology of Archaea, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Ines Li de la Sierra-Gallay
- Function and Architecture of Macromolecular Assemblies, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Christiane Dietrich
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Hanane Issa
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France; Faculty of Sciences, Department of Life and Earth Sciences, Holy Spirit University of Kaslik (USEK), Kaslik, B.P. 446, Jounieh, Lebanon
| | - Christine Houssin
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Nicolas Bayan
- Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
6
|
Abdali N, Barth E, Norouzy A, Schulz R, Nau WM, Kleinekathöfer U, Tauch A, Benz R. Corynebacterium jeikeium jk0268 constitutes for the 40 amino acid long PorACj, which forms a homooligomeric and anion-selective cell wall channel. PLoS One 2013; 8:e75651. [PMID: 24116064 PMCID: PMC3792995 DOI: 10.1371/journal.pone.0075651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/16/2013] [Indexed: 12/01/2022] Open
Abstract
Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed.
Collapse
Affiliation(s)
- Narges Abdali
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Enrico Barth
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Amir Norouzy
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Robert Schulz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Werner M. Nau
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | - Andreas Tauch
- Institute for Genome Research and Systems Biology Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
7
|
Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN MICROBIOLOGY 2013; 2013:935736. [PMID: 23724339 PMCID: PMC3658426 DOI: 10.1155/2013/935736] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.
Collapse
|
8
|
Barzantny H, Schröder J, Strotmeier J, Fredrich E, Brune I, Tauch A. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J Biotechnol 2012; 159:235-48. [DOI: 10.1016/j.jbiotec.2012.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 01/08/2023]
|
9
|
Plassmeier J, Persicke M, Pühler A, Sterthoff C, Rückert C, Kalinowski J. Molecular characterization of PrpR, the transcriptional activator of propionate catabolism in Corynebacterium glutamicum. J Biotechnol 2012; 159:1-11. [DOI: 10.1016/j.jbiotec.2011.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/25/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
|
10
|
A proteome reference map and virulence factors analysis of Yersinia pestis 91001. J Proteomics 2012; 75:894-907. [DOI: 10.1016/j.jprot.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/08/2011] [Indexed: 01/06/2023]
|
11
|
Brune I, Götker S, Schneider J, Rodionov DA, Tauch A. Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032. J Biotechnol 2011; 159:225-34. [PMID: 22178235 DOI: 10.1016/j.jbiotec.2011.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
Abstract
Genomic context analysis in actinobacteria revealed that biotin biosynthesis and transport (bio) genes are co-localized in several genomes with a gene encoding a transcription regulator of the TetR protein family, now named BioQ. Comparative analysis of the upstream regions of bio genes identified the common 13-bp palindromic motif TGAAC-N3-GTTAC as candidate BioQ-binding site. To verify the role of BioQ in controlling the transcription of bio genes, a deletion in the bioQ coding region (cg2309) was constructed in Corynebacterium glutamicum ATCC 13032, resulting in the mutant strain C. glutamicum IB2309. Comparative whole-genome DNA microarray hybridizations and subsequent expression analyses by real-time reverse transcriptase PCR revealed enhanced transcript levels of all bio genes in C. glutamicum IB2309, when compared with the wild-type strain ATCC 13032. Accordingly, the BioQ protein of C. glutamicum acts as a repressor of ten genes that are organized in four transcription units: bioA-bioD, cg2884-cg2883, bioB-cg0096-cg0097, and bioY-bioM-bioN. DNA band shift assays with an intein-tagged BioQ protein demonstrated the specific binding of the purified protein to DNA fragments containing the candidate BioQ-binding sites, which were located within the mapped promoter regions of bioA, cg2884, bioB, and bioY. These data confirmed the direct regulatory role of BioQ in the control of biotin biosynthesis and transport genes in C. glutamicum. Differential expression of bio genes in C. glutamicum IB2309 was moreover complemented by bioQ genes cloned from other corynebacterial genomes.
Collapse
Affiliation(s)
- Iris Brune
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 27, D-33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
12
|
Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose. Proteome Sci 2011; 9:66. [PMID: 22008648 PMCID: PMC3212805 DOI: 10.1186/1477-5956-9-66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/18/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. RESULTS We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. CONCLUSION Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.
Collapse
|
13
|
Barzantny H, Brune I, Tauch A. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmet Sci 2011; 34:2-11. [PMID: 21790661 DOI: 10.1111/j.1468-2494.2011.00669.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the past few decades, there has been an increased interest in the essential role of commensal skin bacteria in human body odour formation. It is now generally accepted that skin bacteria cause body odour by biotransformation of sweat components secreted in the human axillae. Especially, aerobic corynebacteria have been shown to contribute strongly to axillary malodour, whereas other human skin residents seem to have little influence. Analysis of odoriferous sweat components has shown that the major odour-causing substances in human sweat include steroid derivatives, short volatile branched-chain fatty acids and sulphanylalkanols. In this mini-review, we describe the molecular basis of the four most extensively studied routes of human body odour formation, while focusing on the underlying enzymatic processes. Considering the previously reported role of β-oxidation in odour formation, we analysed the genetic repertoire of eight Corynebacterium species concerning fatty acid metabolism. We particularly focused on the metabolic abilities of the lipophilic axillary isolate Corynebacterium jeikeium K411.
Collapse
Affiliation(s)
- H Barzantny
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany.
| | | | | |
Collapse
|
14
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
15
|
A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis. BMC Microbiol 2011; 11:12. [PMID: 21241507 PMCID: PMC3025830 DOI: 10.1186/1471-2180-11-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022] Open
Abstract
Background Bacterial exported proteins represent key components of the host-pathogen interplay. Hence, we sought to implement a combined approach for characterizing the entire exoproteome of the pathogenic bacterium Corynebacterium pseudotuberculosis, the etiological agent of caseous lymphadenitis (CLA) in sheep and goats. Results An optimized protocol of three-phase partitioning (TPP) was used to obtain the C. pseudotuberculosis exoproteins, and a newly introduced method of data-independent MS acquisition (LC-MSE) was employed for protein identification and label-free quantification. Additionally, the recently developed tool SurfG+ was used for in silico prediction of sub-cellular localization of the identified proteins. In total, 93 different extracellular proteins of C. pseudotuberculosis were identified with high confidence by this strategy; 44 proteins were commonly identified in two different strains, isolated from distinct hosts, then composing a core C. pseudotuberculosis exoproteome. Analysis with the SurfG+ tool showed that more than 75% (70/93) of the identified proteins could be predicted as containing signals for active exportation. Moreover, evidence could be found for probable non-classical export of most of the remaining proteins. Conclusions Comparative analyses of the exoproteomes of two C. pseudotuberculosis strains, in addition to comparison with other experimentally determined corynebacterial exoproteomes, were helpful to gain novel insights into the contribution of the exported proteins in the virulence of this bacterium. The results presented here compose the most comprehensive coverage of the exoproteome of a corynebacterial species so far.
Collapse
|
16
|
Brune I, Barzantny H, Klötzel M, Jones J, James G, Tauch A. Identification of McbR as transcription regulator of aecD and genes involved in methionine and cysteine biosynthesis in Corynebacterium jeikeium K411. J Biotechnol 2011; 151:22-9. [DOI: 10.1016/j.jbiotec.2010.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 11/30/2022]
|
17
|
Janssen H, Döring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ. A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl Microbiol Biotechnol 2010; 87:2209-26. [PMID: 20617312 PMCID: PMC3227527 DOI: 10.1007/s00253-010-2741-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/15/2010] [Accepted: 06/15/2010] [Indexed: 12/02/2022]
Abstract
The complex changes in the life cycle of Clostridium acetobutylicum, a promising biofuel producer, are not well understood. During exponential growth, sugars are fermented to acetate and butyrate, and in the transition phase, the metabolism switches to the production of the solvents acetone and butanol accompanied by the initiation of endospore formation. Using phosphate-limited chemostat cultures at pH 5.7, C. acetobutylicum was kept at a steady state of acidogenic metabolism, whereas at pH 4.5, the cells showed stable solvent production without sporulation. Novel proteome reference maps of cytosolic proteins from both acidogenesis and solventogenesis with a high degree of reproducibility were generated. Yielding a 21% coverage, 15 protein spots were specifically assigned to the acidogenic phase, and 29 protein spots exhibited a significantly higher abundance in the solventogenic phase. Besides well-known metabolic proteins, unexpected proteins were also identified. Among these, the two proteins CAP0036 and CAP0037 of unknown function were found as major striking indicator proteins in acidogenic cells. Proteome data were confirmed by genome-wide DNA microarray analyses of the identical cultures. Thus, a first systematic study of acidogenic and solventogenic chemostat cultures is presented, and similarities as well as differences to previous studies of batch cultures are discussed.
Collapse
Affiliation(s)
- Holger Janssen
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18051 Rostock, Germany
| | - Christina Döring
- Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Armin Ehrenreich
- Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 15, 17487 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 15, 17487 Greifswald, Germany
| | - Hubert Bahl
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18051 Rostock, Germany
| | - Ralf-Jörg Fischer
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18051 Rostock, Germany
| |
Collapse
|
18
|
Chao TC, Kalinowski J, Nyalwidhe J, Hansmeier N. Comprehensive proteome profiling of the Fe(III)-reducing myxobacterium Anaeromyxobacter dehalogenans
2CP-C during growth with fumarate and ferric citrate. Proteomics 2010; 10:1673-84. [DOI: 10.1002/pmic.200900687] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Zhou M, Zhang A, Guo Y, Liao Y, Chen H, Jin M. A comprehensive proteome map of the Haemophilus parasuis serovar 5. Proteomics 2009; 9:2722-39. [PMID: 19405026 DOI: 10.1002/pmic.200800717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease of pigs, a disease associated with fibrinous polyserositis, polyarthritis and meningitis. Systematic reference maps of outer membrane, intracellular and extracellular proteome fractions of the clinical isolate H. parasuis SH0165 were examined by 2-DE coupled with MALDI-TOF MS. A total of 539 proteins spots were successfully identified, corresponding to 317 different proteins that were classified into functional categories. The majority of these proteins were linked to housekeeping functions in amino acid transport and metabolism, secondary metabolites biosynthesis, transport and catabolism and post-translational modification, protein turnover and chaperones. A significant number of outer membrane proteins were identified, such as Wza, Omp2, Omp5, D15 and PalA, which were supposed to play important roles in basic physiology of H. parasuis. In addition, several virulence-associated proteins involved in type I (TolC), type III (DsbA and DsbC) and type V (Autotransporter adhesins) secretion systems, and solute-binding proteins participating in iron-uptake systems were also identified in the present study.
Collapse
Affiliation(s)
- Mingguang Zhou
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, P. R. China
| | | | | | | | | | | |
Collapse
|
20
|
Weiss S, Carapito C, Cleiss J, Koechler S, Turlin E, Coppee JY, Heymann M, Kugler V, Stauffert M, Cruveiller S, Médigue C, Van Dorsselaer A, Bertin PN, Arsène-Ploetze F. Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 2008; 91:192-203. [PMID: 18852016 DOI: 10.1016/j.biochi.2008.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/31/2008] [Indexed: 01/09/2023]
Abstract
The arsenite-oxidizing strain Herminiimonas arsenicoxydans proteome was investigated with gel electrophoresis and tandem mass spectrometry analyses. The comparison of experimental and theoretical M(r) and pI, as well as that of peptide sequences identified by MS and predicted protein sequences, allowed the correction of five protein annotations. More importantly, the functional analysis of SDS- and 2D-PAGE proteome maps obtained in the presence of arsenic, combined with partial transcriptomic results indicate that H. arsenicoxydans expressed genes and proteins required not only for arsenic detoxification or stress response but also involved in motility, exopolysaccharide synthesis, phosphate import or energetic metabolism. This study provides therefore new insights into the adaptation processes of H. arsenicoxydans in response to arsenic.
Collapse
Affiliation(s)
- Stéphanie Weiss
- Génétique Moléculaire, Génomique et Microbiologie, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|