1
|
Evans TG, Bible JM, Maynard A, Griffith KR, Sanford E, Kültz D. Proteomic changes associated with predator-induced morphological defenses in oysters. Mol Ecol 2022; 31:4254-4270. [PMID: 35754098 DOI: 10.1111/mec.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Inducible prey defenses occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co-occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defenses. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defenses. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with up-regulation of calcium transport proteins that could influence biomineralization. Inducible defenses evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were down-regulated by both oyster populations after exposure to drills, implying a trade-off between biomineralization and immune function. Following drill exposure, oysters from the population that co-occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform-specific protein expression. This trend suggests that a stronger inducible defense response evolved in oysters that co-occur with drills through modification of an existing mechanism.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Jillian M Bible
- Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, USA
| | - Ashley Maynard
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Kaylee R Griffith
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Pospíšil J, Strunin D, Ziková A, Hubálek M, Vohradský J. A Comparison of Protein and mRNA Expression during Development of the Soil Dwelling Prokaryote (
S. coelicolor
). Proteomics 2020; 20:e2000032. [DOI: 10.1002/pmic.202000032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Jiří Pospíšil
- Laboratory of BioinformaticsInstitute of MicrobiologyCzech Academy of Sciences v.v.i., Videnska 1083 Prague 14220 Czech Republic
| | - Dmytro Strunin
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences v.v.i., Flemingovo n. 2 Prague 16610 Czech Republic
| | - Alice Ziková
- Laboratory of BioinformaticsInstitute of MicrobiologyCzech Academy of Sciences v.v.i., Videnska 1083 Prague 14220 Czech Republic
| | - Martin Hubálek
- Laboratory of BioinformaticsInstitute of MicrobiologyCzech Academy of Sciences v.v.i., Videnska 1083 Prague 14220 Czech Republic
| | - Jiří Vohradský
- Laboratory of BioinformaticsInstitute of MicrobiologyCzech Academy of Sciences v.v.i., Videnska 1083 Prague 14220 Czech Republic
| |
Collapse
|
3
|
Takahashi-Íñiguez T, Barrios-Hernández J, Rodríguez-Maldonado M, Flores ME. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145. Arch Microbiol 2018; 200:1279-1286. [DOI: 10.1007/s00203-018-1541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
|
4
|
Bobek J, Strakova E, Zikova A, Vohradsky J. Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor. BMC Genomics 2014; 15:1173. [PMID: 25539760 PMCID: PMC4367926 DOI: 10.1186/1471-2164-15-1173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial spore germination is a developmental process during which all required metabolic pathways are restored to transfer cells from their dormant state into vegetative growth. Streptomyces are soil dwelling filamentous bacteria with complex life cycle, studied mostly for they ability to synthesize secondary metabolites including antibiotics. RESULTS Here, we present a systematic approach that analyzes gene expression data obtained from 13 time points taken over 5.5 h of Streptomyces germination. Genes whose expression was significantly enhanced/diminished during the time-course were identified, and classified to metabolic and regulatory pathways. The classification into metabolic pathways revealed timing of the activation of specific pathways during the course of germination. The analysis also identified remarkable changes in the expression of specific sigma factors over the course of germination. Based on our knowledge of the targets of these factors, we speculate on their possible roles during germination. Among the factors whose expression was enhanced during the initial part of germination, SigE is though to manage cell wall reconstruction, SigR controls protein re-aggregation, and others (SigH, SigB, SigI, SigJ) control osmotic and oxidative stress responses. CONCLUSIONS From the results, we conclude that most of the metabolic pathway mRNAs required for the initial phases of germination were synthesized during the sporulation process and stably conserved in the spore. After rehydration in growth medium, the stored mRNAs are being degraded and resynthesized during first hour. From the analysis of sigma factors we conclude that conditions favoring germination evoke stress-like cell responses.
Collapse
Affiliation(s)
| | | | | | - Jiri Vohradsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Bioinformatics, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
5
|
Bralley P, Gatewood ML, Jones GH. Transcription of the rpsO-pnp operon of Streptomyces coelicolor involves four temporally regulated, stress responsive promoters. Gene 2013; 536:177-85. [PMID: 24211388 DOI: 10.1016/j.gene.2013.10.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
Primer extension with RNA from an RNase III null mutant of Streptomyces coelicolor M145 and a primer complementary to the polynucleotide phosphorylase gene revealed two major extension products. Two different extension products were observed using RNA from either wild type M145 or the null mutant with a primer complementary to rpsO. Mapping of the 5'-ends of these extension products to the rpsO-pnp intergenic region indicated that all four putative transcription start sites were preceded by possible promoter sequences. These putative promoters were synthesized by the PCR and cloned into pIPP2, a xylE-based streptomycete promoter probe vector. Transfer of the pIPP2 derivatives to S. coelicolor and catechol dioxygenase assays demonstrated that all four cloned fragments had promoter activity in vivo. The activities of the four promoters changed over the course of growth of S. coelicolor and studies in three sigma factor mutant strains demonstrated that three of the promoters were σ(B) dependent. Northern blotting studies showed that the levels of the rpsO-pnp transcripts remained relatively constant over the course of growth of S. coelicolor M145, but that on a molar basis, the levels of the readthrough and pnp transcripts were considerably lower than those of rpsO. PNPase is a cold shock protein in S. coelicolor and the activity of the rpsO-pnp promoters increased during cold shock at 10°, resulting in a two-fold increase in PNPase activity, compared with the activity at 30°.
Collapse
Affiliation(s)
| | | | - George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322 USA.
| |
Collapse
|
6
|
Strakova E, Bobek J, Zikova A, Vohradsky J. Global features of gene expression on the proteome and transcriptome levels in S. coelicolor during germination. PLoS One 2013; 8:e72842. [PMID: 24039809 PMCID: PMC3767685 DOI: 10.1371/journal.pone.0072842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Streptomycetes have been studied mostly as producers of secondary metabolites, while the transition from dormant spores to an exponentially growing culture has largely been ignored. Here, we focus on a comparative analysis of fluorescently and radioactively labeled proteome and microarray acquired transcriptome expressed during the germination of Streptomyces coelicolor. The time-dynamics is considered, starting from dormant spores through 5.5 hours of growth with 13 time points. Time series of the gene expressions were analyzed using correlation, principal components analysis and an analysis of coding genes utilization. Principal component analysis was used to identify principal kinetic trends in gene expression and the corresponding genes driving S. coelicolor germination. In contrast with the correlation analysis, global trends in the gene/protein expression reflected by the first principal components showed that the prominent patterns in both the protein and the mRNA domains are surprisingly well correlated. Analysis of the number of expressed genes identified functional groups activated during different time intervals of the germination.
Collapse
Affiliation(s)
- Eva Strakova
- Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Bobek
- Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Alice Zikova
- Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiri Vohradsky
- Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
7
|
Strakova E, Bobek J, Zikova A, Rehulka P, Benada O, Rehulkova H, Kofronova O, Vohradsky J. Systems insight into the spore germination of Streptomyces coelicolor. J Proteome Res 2012. [PMID: 23181467 DOI: 10.1021/pr300980v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An example of bacterium, which undergoes a complex development, is the genus of Streptomyces whose importance lies in their wide capacity to produce secondary metabolites, including antibiotics. In this work, a proteomic approach was applied to the systems study of germination as a transition from dormancy to the metabolically active stage. The protein expression levels were examined throughout the germination time course, the kinetics of the accumulated and newly synthesized proteins were clustered, and proteins detected in each group were identified. Altogether, 104 2DE gel images at 13 time points, from dormant state until 5.5 h of growth, were analyzed. The mass spectrometry identified proteins were separated into functional groups and their potential roles during germination were further assessed. The results showed that the full competence of spores to effectively undergo active metabolism is derived from the sporulation step, which facilitates the rapid initiation of global protein expression during the first 10 min of cultivation. Within the first hour, the majority of proteins were synthesized. From this stage, the full capability of regulatory mechanisms to respond to environmental cues is presumed. The obtained results might also provide a data source for further investigations of the process of germination.
Collapse
Affiliation(s)
- Eva Strakova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Bioinformatics, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gatewood ML, Bralley P, Weil MR, Jones GH. RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase III. J Bacteriol 2012; 194:2228-37. [PMID: 22389483 PMCID: PMC3347082 DOI: 10.1128/jb.06541-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/23/2012] [Indexed: 11/20/2022] Open
Abstract
RNase III is a key enzyme in the pathways of RNA degradation and processing in bacteria and has been suggested as a global regulator of antibiotic production in Streptomyces coelicolor. Using RNA-Seq, we have examined the transcriptomes of S. coelicolor M145 and an RNase III (rnc)-null mutant of that strain. RNA preparations with reduced levels of structural RNAs were prepared by subtractive hybridization prior to RNA-Seq analysis. We initially identified 7,800 transcripts of known and putative protein-coding genes in M145 and the null mutant, JSE1880, along with transcripts of 21 rRNA genes and 65 tRNA genes. Approximately 3,100 of the protein-coding transcripts were categorized as low-abundance transcripts. For further analysis, we selected those transcripts of known and putative protein-coding genes whose levels changed by ≥ 2-fold between the two S. coelicolor strains and organized those transcripts into 16 functional categories. We refined our analysis by performing RNA immunoprecipitation of the mRNA preparation from JSE1880 using a mutant RNase III protein that binds to transcripts but does not cleave them. This analysis identified ca. 800 transcripts that were enriched in the RNA immunoprecipitates, including 28 transcripts whose levels also changed by ≥ 2-fold in the RNA-Seq analysis. We compare our results with those obtained by microarray analysis of the S. coelicolor transcriptome and with studies describing the characterization of small noncoding RNAs. We have also used the RNA immunoprecipitation results to identify new substrates for RNase III cleavage.
Collapse
Affiliation(s)
| | | | - M. Ryan Weil
- Emory Genome Center, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
9
|
Luo Y, Ding X, Xia L, Huang F, Li W, Huang S, Tang Y, Sun Y. Comparative Proteomic Analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci 2011; 9:40. [PMID: 21762521 PMCID: PMC3149565 DOI: 10.1186/1477-5956-9-40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/16/2011] [Indexed: 01/23/2023] Open
Abstract
Background Saccharopolyspora spinosa produces the environment-friendly biopesticide spinosad, a mixture of two polyketide-derived macrolide active ingredients called spinosyns A and D. Therefore considerable interest is in the improvement of spinosad production because of its low yield in wild-type S. spinosa. Recently, a spinosad-hyperproducing PR2 strain with stable heredity was obtained from protoplast regeneration of the wild-type S. spinosa SP06081 strain. A comparative proteomic analysis was performed on the two strains during the first rapid growth phase (RG1) in seed medium (SM) by using label-free quantitative proteomics to investigate the underlying mechanism leading to the enhancement of spinosad yield. Results In total, 224 proteins from the SP06081 strain and 204 proteins from the PR2 strain were unambiguously identified by liquid chromatography-tandem mass spectrometry analysis, sharing 140 proteins. A total of 12 proteins directly related to spinosad biosynthesis were identified from the two strains in RG1. Comparative analysis of the shared proteins revealed that approximately 31% of them changed their abundance significantly and fell in all of the functional groups, such as tricarboxylic acid cycles, glycolysis, biosynthetic processes, catabolic processes, transcription, translation, oxidation and reduction. Several key enzymes involved in the synthesis of primary metabolic intermediates used as precursors for spinosad production, energy supply, polyketide chain assembly, deoxysugar methylation, and antioxidative stress were differentially expressed in the same pattern of facilitating spinosad production by the PR2 strain. Real-time reverse transcriptase polymerase chain reaction analysis revealed that four of five selected genes showed a positive correlation between changes at the translational and transcriptional expression level, which further confirmed the proteomic analysis. Conclusions The present study is the first comprehensive and comparative proteome analysis of S. spinosa strains. Our results highlight the differentially expressed proteins between the two S. spinosa strains and provide some clues to understand the molecular and metabolic mechanisms that could lead to the increased spinosad production yield.
Collapse
Affiliation(s)
- Yushuang Luo
- Hunan Provincial Key Laboratory of Microbial Molecular Biology--State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P, R, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gallo G, Renzone G, Alduina R, Stegmann E, Weber T, Lantz AE, Thykaer J, Sangiorgi F, Scaloni A, Puglia AM. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina. Proteomics 2010; 10:1336-58. [DOI: 10.1002/pmic.200900175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis. Genomics 2008; 92:393-9. [PMID: 18775774 DOI: 10.1016/j.ygeno.2008.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 07/19/2008] [Accepted: 08/17/2008] [Indexed: 11/23/2022]
Abstract
This work investigates the significance of changes in association patterns linking indicators of neuroendocrine and immune activity in patients with chronic fatigue syndrome (CFS). Gene sets preferentially expressed in specific immune cell isolates were integrated with neuroendocrine data from a large population-based study. Co-expression patterns linking immune cell activity with hypothalamic-pituitary-adrenal (HPA), thyroidal (HPT) and gonadal (HPG) axis status were computed using mutual information criteria. Networks in control and CFS subjects were compared globally in terms of a weighted graph edit distance. Local re-modeling of node connectivity was quantified by node degree and eigenvector centrality measures. Results indicate statistically significant differences between CFS and control networks determined mainly by re-modeling around pituitary and thyroid nodes as well as an emergent immune sub-network. Findings align with known mechanisms of chronic inflammation and support possible immune-mediated loss of thyroid function in CFS exacerbated by blunted HPA axis responsiveness.
Collapse
|
12
|
Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. PLoS One 2008; 3:e2097. [PMID: 18461186 PMCID: PMC2367054 DOI: 10.1371/journal.pone.0002097] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/25/2008] [Indexed: 11/19/2022] Open
Abstract
Many biological processes are intrinsically dynamic, incurring profound changes at both molecular and physiological levels. Systems analyses of such processes incorporating large-scale transcriptome or proteome profiling can be quite revealing. Although consistency between mRNA and proteins is often implicitly assumed in many studies, examples of divergent trends are frequently observed. Here, we present a comparative transcriptome and proteome analysis of growth and stationary phase adaptation in Streptomyces coelicolor, taking the time-dynamics of process into consideration. These processes are of immense interest in microbiology as they pertain to the physiological transformations eliciting biosynthesis of many naturally occurring therapeutic agents. A shotgun proteomics approach based on mass spectrometric analysis of isobaric stable isotope labeled peptides (iTRAQ™) enabled identification and rapid quantification of approximately 14% of the theoretical proteome of S. coelicolor. Independent principal component analyses of this and DNA microarray-derived transcriptome data revealed that the prominent patterns in both protein and mRNA domains are surprisingly well correlated. Despite this overall correlation, by employing a systematic concordance analysis, we estimated that over 30% of the analyzed genes likely exhibited significantly divergent patterns, of which nearly one-third displayed even opposing trends. Integrating this data with biological information, we discovered that certain groups of functionally related genes exhibit mRNA-protein discordance in a similar fashion. Our observations suggest that differences between mRNA and protein synthesis/degradation mechanisms are prominent in microbes while reaffirming the plausibility of such mechanisms acting in a concerted fashion at a protein complex or sub-pathway level.
Collapse
|