1
|
Fujimoto T, Okamura T, Itoh K. Extraction method combining saponin and trehalose useful for analyzing fragile intermolecular association. Biochem Biophys Res Commun 2024; 727:150323. [PMID: 38945065 DOI: 10.1016/j.bbrc.2024.150323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Immunoprecipitation (IP) and co-immunoprecipitation (co-IP) are well-established methodologies to analyze protein expression and intermolecular interaction. Composition of extraction and washing buffer for preparing protein is important to accomplish experimental purpose. Various kinds of detergents are included in buffer to adjust extraction efficiency and washing effect. Among them, Triton X-100 (Tx-100), Nonidet P-40 (NP40), deoxycholic acid (DOC) and SDS are generally used according to experimental purpose and characteristic features of protein of interest. In some cases, general detergents disrupt intermolecular interaction and make it impossible to analyze molecular relation of protein of interest with its binding partners. In this study, we propose saponin, a natural detergent, is useful for co-immunoprecipitation when analyzing fragile intermolecular interactions, in which dystrophin and dystroglycan are used as a representative interaction. One of the most notable findings in this report is that intermolecular association between dystrophin and dystroglycan is maintained in saponin buffer whereas general detergents, such as Tx-100, NP40 and DOC, dissociate its binding. Furthermore, supplementation of trehalose, which has been shown to act as a molecular chaperone, facilitates efficient detection of dystrophin-dystroglycan macromolecular complex in co-IP assay. Importantly, the extraction buffer comprising 3 % saponin, 0.5 M trehalose and 0.05 % Tx-100 (we named it STX buffer) is applicable to co-IP for another molecular interaction, N-cadherin and β-catenin, indicating that this methodology can be used for versatile proteins of interest. Thus, STX buffer emerges as an alternative extraction method useful for analyzing fragile intermolecular associations and provides opportunity to identify complex interactomes, which may facilitate proteome-research and functional analysis of proteins of interest.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
2
|
Sadeghi L, Rizvanov AA, Dabirmanesh B, Salafutdinov II, Sayyah M, Shojaei A, Zahiri J, Mirnajafi-Zadeh J, Khorsand B, Khajeh K, Fathollahi Y. Proteomic profiling of the rat hippocampus from the kindling and pilocarpine models of epilepsy: potential targets in calcium regulatory network. Sci Rep 2021; 11:8252. [PMID: 33859251 PMCID: PMC8050094 DOI: 10.1038/s41598-021-87555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
Herein proteomic profiling of the rat hippocampus from the kindling and pilocarpine models of epilepsy was performed to achieve new potential targets for treating epileptic seizures. A total of 144 differently expressed proteins in both left and right hippocampi by two-dimensional electrophoresis coupled to matrix-assisted laser desorption-mass spectrometry were identified across the rat models of epilepsy. Based on network analysis, the majority of differentially expressed proteins were associated with Ca2+ homeostasis. Changes in ADP-ribosyl cyclase (ADPRC), lysophosphatidic acid receptor 3 (LPAR3), calreticulin, ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), synaptosomal nerve-associated protein 25 (SNAP 25) and transgelin 3 proteins were probed by Western blot analysis and validated using immunohistochemistry. Inhibition of calcium influx by 8-Bromo-cADP-Ribose (8-Br-cADPR) and 2-Aminoethyl diphenylborinate (2-APB) which act via the ADPRC and LPAR3, respectively, attenuated epileptic seizures. Considering a wide range of molecular events and effective role of calcium homeostasis in epilepsy, polypharmacy with multiple realistic targets should be further explored to reach the most effective treatments.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Shojaei
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Javad Zahiri
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Yaghoub Fathollahi
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Zandi F, Khalaj V, Goshadrou F, Meyfour A, Gholami A, Enayati S, Mehranfar M, Rahmati S, Kheiri EV, Badie HG, Vaziri B. Rabies virus matrix protein targets host actin cytoskeleton: a protein-protein interaction analysis. Pathog Dis 2020; 79:6027507. [PMID: 33289839 DOI: 10.1093/femspd/ftaa075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Multifunctional matrix protein (M) of rabies virus (RABV) plays essential roles in the pathogenesis of rabies infection. Identification of M protein interacting partners in target hosts could help to elucidate the biological pathways and molecular mechanisms involved in the pathogenesis of this virus. In this study, two-dimensional Far-western blotting (2D-Far-WB) technique was applied to find possible matrix protein partners in the rat brainstem. Recombinant RABV M was expressed in Pichia pastoris and was partially purified. Subsequently, 2D-Far-WB-determined six rat brainstem proteins interacted with recombinant M proteins that were identified by mass spectrometry. Functional annotation by gene ontology analysis determined these proteins were involved in the regulation of synaptic transmission processes, metabolic process and cell morphogenesis-cytoskeleton organization. The interaction of viral M protein with selected host proteins in mouse Neuro-2a cells infected with RABV was verified by super-resolution confocal microscopy. Molecular docking simulations also demonstrated the formation of RABV M complexes. However, further confirmation with co-immunoprecipitation was only successful for M-actin cytoplasmic 1 interaction. Our study revealed actin cytoplasmic 1 as a binding partner of M protein, which might have important role(s) in rabies pathogenesis.
Collapse
Affiliation(s)
- Fatemeh Zandi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.,Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, 16635-148, Iran
| | - Alireza Gholami
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Somayeh Enayati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahsa Mehranfar
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | | | - Hamid Gholamipour Badie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
4
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Ganesan V, Ascherman DP, Minden JS. Immunoproteomics technologies in the discovery of autoantigens in autoimmune diseases. Biomol Concepts 2017; 7:133-43. [PMID: 27115324 DOI: 10.1515/bmc-2016-0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Proteomics technologies are often used for the identification of protein targets of the immune system. Here, we discuss the immunoproteomics technologies used for the discovery of autoantigens in autoimmune diseases where immune system dysregulation plays a central role in disease onset and progression. These autoantigens and associated autoantibodies can be used as potential biomarkers for disease diagnostics, prognostics and predicting/monitoring drug responsiveness (theranostics). Here, we compare a variety of methods such as mass spectrometry (MS)-based [serological proteome analysis (SERPA), antibody mediated identification of antigens (AMIDA), circulating immune complexome (CIC) analysis, surface enhanced laser desorption/ionization-time of flight (SELDI-TOF)], nucleic acid based serological analysis of antigens by recombinant cDNA expression cloning (SEREX), phage immunoprecipitation sequencing (PhIP-seq) and array-based immunoscreening (proteomic microarrays), luciferase immunoprecipitation systems (LIPS), nucleic acid programmable protein array (NAPPA) methods. We also review the relevance of immunoproteomic data generated in the last 10 years, with a focus on the aforementioned MS based methods.
Collapse
|
6
|
Stanczyk PJ, Lai FA, Zissimopoulos S. Genetic and Biochemical Approaches for In Vivo and In Vitro Assessment of Protein Oligomerization: The Ryanodine Receptor Case Study. J Vis Exp 2016. [PMID: 27500320 PMCID: PMC5065051 DOI: 10.3791/54271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Oligomerization is often a structural requirement for proteins to accomplish their specific cellular function. For instance, tetramerization of the ryanodine receptor (RyR) is necessary for the formation of a functional Ca2+ release channel pore. Here, we describe detailed protocols for the assessment of protein self-association, including yeast two-hybrid (Y2H), co-immunoprecipitation (co-IP) and chemical cross-linking assays. In the Y2H system, protein self-interaction is detected by β-galactosidase assay in yeast co-expressing GAL4 bait and target fusions of the test protein. Protein self-interaction is further assessed by co-IP using HA- and cMyc-tagged fusions of the test protein co-expressed in mammalian HEK293 cells. The precise stoichiometry of the protein homo-oligomer is examined by cross-linking and SDS-PAGE analysis following expression in HEK293 cells. Using these different but complementary techniques, we have consistently observed the self-association of the RyR N-terminal domain and demonstrated its intrinsic ability to form tetramers. These methods can be applied to protein-protein interaction and homo-oligomerization studies of other mammalian integral membrane proteins.
Collapse
|
7
|
Kito K, Okada M, Ishibashi Y, Okada S, Ito T. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards. Proteomics 2016; 16:1457-73. [DOI: 10.1002/pmic.201500414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/18/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Keiji Kito
- Department of Life Sciences, School of Agriculture; Meiji University; Kawasaki Japan
| | - Mitsuhiro Okada
- Department of Life Sciences, School of Agriculture; Meiji University; Kawasaki Japan
| | - Yuko Ishibashi
- Department of Life Sciences, School of Agriculture; Meiji University; Kawasaki Japan
| | - Satoshi Okada
- Department of Biochemistry; Kyushu University Graduate School of Medical Science; Fukuoka Japan
| | - Takashi Ito
- Department of Biochemistry; Kyushu University Graduate School of Medical Science; Fukuoka Japan
| |
Collapse
|
8
|
Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH. Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 2015; 16:4581-99. [PMID: 25734986 PMCID: PMC4394436 DOI: 10.3390/ijms16034581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/29/2014] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Eun Young Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Won Kon Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kyoung-Jin Oh
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Baek Soo Han
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kwang-Hee Bae
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| |
Collapse
|
9
|
Verma N, Pink M, Petrat F, Rettenmeier AW, Schmitz-Spanke S. Proteomic Analysis of Human Bladder Epithelial Cells by 2D Blue Native SDS-PAGE Reveals TCDD-Induced Alterations of Calcium and Iron Homeostasis Possibly Mediated by Nitric Oxide. J Proteome Res 2014; 14:202-13. [DOI: 10.1021/pr501051f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nisha Verma
- Gene
Center, Ludwig-Maximilians-University, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Mario Pink
- Institute
and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr. 25/29, 91054 Erlangen, Germany
| | | | | | - Simone Schmitz-Spanke
- Institute
and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr. 25/29, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Ganesan V, Schmidt B, Avula R, Cooke D, Maggiacomo T, Tellin L, Ascherman DP, Bruchez MP, Minden J. Immuno-proteomics: Development of a novel reagent for separating antibodies from their target proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:592-600. [PMID: 25466873 DOI: 10.1016/j.bbapap.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022]
Abstract
Immunoprecipitation (IP) is a widely used technique for identifying the binding partners of the target proteins of specific antibodies. Putative binding targets and their partners are usually in much lower amounts than the antibodies used to capture these target proteins. Thus antigen identification using proteomics following IP is often confounded by the presence of an overwhelming amount of interfering antibody protein. Even covalently linking antibodies to beads is susceptible to antibody leaching during IP. To circumvent this interference, we describe here a reagent, called Biotin-CDM that reversibly tags all potential target proteins in a cell lysate with biotin. The presence of biotin coupled to the target proteins allows for a secondary separation step in which antibodies are washed away from the reversibly biotinylated target proteins by binding them to an Avidin-coupled matrix. The captured target proteins are released from the Avidin matrix by reversing the Biotin-CDM link, thus releasing a pool of target proteins ready for further proteomic analysis compatible with 2D-electrophoresis. Here, we describe the synthesis and characterization of Biotin-CDM. We also demonstrate Biotin-CDM's use for immunoprecipitation of a known antigen, as well as its use for capturing an array of proteins targeted by the autoantibodies found in the serum a patient suffering from rheumatoid arthritis. The use of this reagent allows one to combine immunoprecipitation and 2D-Difference gel electrophoresis, overcoming the current limitations of Serological Proteome Analysis (SERPA) in discovering autoantigens. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Vinitha Ganesan
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Brigitte Schmidt
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Raghunandan Avula
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Dagney Cooke
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Taylor Maggiacomo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Lawton Tellin
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Dana P Ascherman
- Division of Rheumatology, Department of Medicine, University of Miami Miller School of Medicine, 1600 Northwest 10th Avenue, Miami, FL 33136, USA
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Li XW, Rees JS, Xue P, Zhang H, Hamaia SW, Sanderson B, Funk PE, Farndale RW, Lilley KS, Perrett S, Jackson AP. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J Biol Chem 2014; 289:14434-47. [PMID: 24706754 PMCID: PMC4031500 DOI: 10.1074/jbc.m113.529578] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the vertebrate immune system, each B-lymphocyte expresses a surface IgM-class B cell receptor (BCR). When cross-linked by antigen or anti-IgM antibody, the BCR accumulates with other proteins into distinct surface clusters that activate cell signaling, division, or apoptosis. However, the molecular composition of these clusters is not well defined. Here we describe a quantitative assay we call selective proteomic proximity labeling using tyramide (SPPLAT). It allows proteins in the immediate vicinity of a target to be selectively biotinylated, and hence isolated for mass spectrometry analysis. Using the chicken B cell line DT40 as a model, we use SPPLAT to provide the first proteomic analysis of any BCR cluster using proximity labeling. We detect known components of the BCR cluster, including integrins, together with proteins not previously thought to be BCR-associated. In particular, we identify the chicken B-lymphocyte allotypic marker chB6. We show that chB6 moves to within about 30–40 nm of the BCR following BCR cross-linking, and we show that cross-linking chB6 activates cell binding to integrin substrates laminin and gelatin. Our work provides new insights into the nature and composition of the BCR cluster, and confirms SPPLAT as a useful research tool in molecular and cellular proteomics.
Collapse
Affiliation(s)
- Xue-Wen Li
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, the University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Johanna S Rees
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom, the Cambridge Centre for Proteomics, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Peng Xue
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Hong Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Samir W Hamaia
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Bailey Sanderson
- the Department of Biological Sciences, DePaul University, Chicago, Illinois 60604, and
| | - Phillip E Funk
- the Department of Biological Sciences, DePaul University, Chicago, Illinois 60604, and
| | - Richard W Farndale
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kathryn S Lilley
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom, the Cambridge Centre for Proteomics, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China,
| | - Antony P Jackson
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom,
| |
Collapse
|
12
|
Liu R, Wang K, Yuan K, Wei Y, Huang C. Integrative oncoproteomics strategies for anticancer drug discovery. Expert Rev Proteomics 2014; 7:411-29. [DOI: 10.1586/epr.10.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PLoS One 2013; 8:e61430. [PMID: 23613850 PMCID: PMC3629208 DOI: 10.1371/journal.pone.0061430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners.
Collapse
|
14
|
Lothrop AP, Torres MP, Fuchs SM. Deciphering post-translational modification codes. FEBS Lett 2013; 587:1247-57. [PMID: 23402885 DOI: 10.1016/j.febslet.2013.01.047] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/20/2013] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) occur on nearly all proteins. Many domains within proteins are modified on multiple amino acid sidechains by diverse enzymes to create a myriad of possible protein species. How these combinations of PTMs lead to distinct biological outcomes is only beginning to be understood. This manuscript highlights several examples of combinatorial PTMs in proteins, and describes recent technological developments, which are driving our ability to understand how PTM patterns may "code" for biological outcomes.
Collapse
Affiliation(s)
- Adam P Lothrop
- Department of Biology, Tufts University, 200 Boston Ave. Suite 4700, Medford, MA 02155, USA
| | | | | |
Collapse
|
15
|
Inder KL, Davis M, Hill MM. Ripples in the pond--using a systems approach to decipher the cellular functions of membrane microdomains. MOLECULAR BIOSYSTEMS 2013; 9:330-8. [PMID: 23322173 DOI: 10.1039/c2mb25300c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane microdomains such as lipid rafts and caveolae regulate a myriad of cellular functions including cell signalling, protein trafficking, cell viability, and cell movement. They have been implicated in diseases such as cancer, diabetes and Alzheimer's disease, highlighting the essential role they play in cell processes. Despite much research and debate on the size, composition and dynamics of membrane microdomains, the molecular mechanism(s) of their action remain poorly understood. Most studies have dealt solely with the content and properties of the membrane microdomain as an entity in itself. However, recent work shows that membrane microdomain disruption has wide ranging effects on other subcellular compartments, and the cell as a whole. Hence we propose that a systems approach incorporating many cellular attributes such as subcellular localisation is required in order to understand the global impact of microdomains on cell function. Although analysis of sub-proteome changes already provides additional insight, we further propose biological network analysis of functional proteomics data to capture effects at the systems level. In this review, we highlight the use of protein-protein interactions networks and mixed networks to portray and visualize the relationships between proteins within and between subcellular fractions. Such a systems analysis will be required to improve our understanding of the full cellular function of membrane microdomains.
Collapse
|
16
|
Trinkle-Mulcahy L. Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry. Proteomics 2012; 12:1623-38. [PMID: 22610586 DOI: 10.1002/pmic.201100438] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Label-based quantitative mass spectrometry analysis of affinity purified complexes, with its built-in negative controls and relative ease of use, is an increasingly popular choice for defining protein-protein interactions and multiprotein complexes. This approach, which differentially labels proteins/peptides from two or more populations and combines them prior to analysis, permits direct comparison of a protein pulldown (e.g. affinity purified tagged protein) to that of a control pulldown (e.g. affinity purified tag alone) in a single mass spectrometry (MS) run, thus avoiding the variability inherent in separate runs. The use of quantitative techniques has been driven in large part by significant improvements in the resolution and sensitivity of high-end mass spectrometers. Importantly, the availability of commercial reagents and open source identification/quantification software has made these powerful techniques accessible to nonspecialists. Benefits and drawbacks of the most popular labeling-based approaches are discussed here, and key steps/strategies for the use of labeling in quantitative immunoprecipitation experiments detailed.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Han S, Auger C, Castonguay Z, Appanna VP, Thomas SC, Appanna VD. The unravelling of metabolic dysfunctions linked to metal-associated diseases by blue native polyacrylamide gel electrophoresis. Anal Bioanal Chem 2012; 405:1821-31. [PMID: 23001308 DOI: 10.1007/s00216-012-6413-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 01/18/2023]
Abstract
Gel electrophoresis is routinely used to separate and analyse macromolecules in biological systems. Although many of these electrophoretic techniques necessitate the denaturing of the analytes prior to their analysis, blue native polyacrylamide gel electrophoresis (BN-PAGE) permits the investigation of proteins/enzymes and their supramolecular structures such as the metabolon in native form. This attribute renders this analytical tool conducive to deciphering the metabolic perturbations invoked by metal toxicity. In this review, we elaborate on how BN-PAGE has led to the discovery of the dysfunctional metabolic pathways associated with disorders such as Alzheimer's disease, Parkinson's disease, and obesity that have been observed as a consequence of exposure to various metal toxicants.
Collapse
Affiliation(s)
- Sungwon Han
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
19
|
Clifford-Nunn B, Showalter HDH, Andrews PC. Quaternary diamines as mass spectrometry cleavable crosslinkers for protein interactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:201-12. [PMID: 22131227 PMCID: PMC3573217 DOI: 10.1007/s13361-011-0288-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 05/11/2023]
Abstract
Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein-protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS(3) because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS(3) results in productive backbone fragmentation.
Collapse
Affiliation(s)
- Billy Clifford-Nunn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, USA
| | - H. D. Hollis Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan Vahlteich Medicinal Chemistry Core, Ann Arbor, MI, USA
| | - Philip C. Andrews
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Room 1198, 300 North Ingalls Building, 300 North Ingalls St., Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Kito K, Ito T. Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 2011; 9:263-74. [PMID: 19452043 PMCID: PMC2682933 DOI: 10.2174/138920208784533647] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/25/2008] [Accepted: 04/27/2008] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry has served as a major tool for the discipline of proteomics to catalogue proteins in an unprecedented scale. With chemical and metabolic techniques for stable isotope labeling developed over the past decade, it is now routinely used as a method for relative quantification to provide valuable information on alteration of protein abundance in a proteome-wide scale. More recently, absolute or stoichiometric quantification of proteome is becoming feasible, in particular, with the development of strategies with isotope-labeled standards composed of concatenated peptides. On the other hand, remarkable progress has been also made in label-free quantification methods based on the number of identified peptides. Here we review these mass spectrometry-based approaches for absolute quantification of proteome and discuss their implications.
Collapse
Affiliation(s)
- Keiji Kito
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
| | | |
Collapse
|
21
|
Yang W, Chung YG, Kim Y, Kim TK, Keay SK, Zhang CO, Ji M, Hwang D, Kim KP, Steen H, Freeman MR, Kim J. Quantitative proteomics identifies a beta-catenin network as an element of the signaling response to Frizzled-8 protein-related antiproliferative factor. Mol Cell Proteomics 2011; 10:M110.007492. [PMID: 21422242 DOI: 10.1074/mcp.m110.007492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Antiproliferative factor (APF), a Frizzled-8 protein-related sialoglycopeptide involved in the pathogenesis of interstitial cystitis, potently inhibits proliferation of normal urothelial cells as well as certain cancer cells. To elucidate the molecular mechanisms of the growth-inhibitory effect of APF, we performed stable isotope labeling by amino acids in cell culture analysis of T24 bladder cancer cells treated with and without APF. Among over 2000 proteins identified, 54 were significantly up-regulated and 48 were down-regulated by APF treatment. Bioinformatic analysis revealed that a protein network involved in cell adhesion was substantially altered by APF and that β-catenin was a prominent node in this network. Functional assays demonstrated that APF down-regulated β-catenin, at least in part, via proteasomal and lysosomal degradation. Moreover, silencing of β-catenin mimicked the antiproliferative effect of APF whereas ectopic expression of nondegradable β-catenin rescued growth inhibition in response to APF, confirming that β-catenin is a key mediator of APF signaling. Notably, the key role of β-catenin in APF signaling is not restricted to T24 cells, but was also observed in an hTERT-immortalized human bladder epithelial cell line, TRT-HU1. In addition, the network model suggested that β-catenin is linked to cyclooxygenase-2 (COX-2), implying a potential connection between APF and inflammation. Functional assays verified that APF increased the production of prostaglandin E(2) and that down-modulation of β-catenin elevated COX-2 expression, whereas forced expression of nondegradable β-catenin inhibited APF-induced up-regulation of COX-2. Furthermore, we confirmed that β-catenin was down-regulated whereas COX-2 was up-regulated in epithelial cells explanted from IC bladder biopsies compared with control tissues. In summary, our quantitative proteomics study describes the first provisional APF-regulated protein network, within which β-catenin is a key node, and provides new insight that targeting the β-catenin signaling pathway may be a rational approach toward treating interstitial cystitis.
Collapse
Affiliation(s)
- Wei Yang
- Urological Diseases Research Center, Children's Hospital Boston, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng J, Wei C, Zhao L, Liu L, Leng W, Li W, Jin Q. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin. BMC Genomics 2011; 12:40. [PMID: 21241518 PMCID: PMC3032701 DOI: 10.1186/1471-2164-12-40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 01/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. RESULTS Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. CONCLUSIONS In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction.
Collapse
Affiliation(s)
- Jianhua Zheng
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Marina O, Duke-Cohan JS, Wu CJ. A coprecipitation-based validation methodology for interactions identified using protein microarrays. Methods Mol Biol 2011; 723:239-254. [PMID: 21370070 DOI: 10.1007/978-1-61779-043-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Candidate interactions identified by high-throughput protein microarray screening require rigorous -confirmation. Such validation is time-consuming and labor-intensive using conventional techniques. We describe a medium-throughput validation protocol based on coprecipitation of biotin-labeled -proteins synthesized in vitro using a rabbit reticulocyte lysate-coupled transcription and translation system. As our experimental system is based on screening for serum antibodies, we also present methods on purifying immunoglobulin from serum and quantifying the amount of coprecipitated (immunoprecipitated) target protein on Western blot. This technique provides a sensitive confirmatory test allowing for the rapid elimination of false positives prior to more extensive validation and analysis of target interactions in their native environment.
Collapse
Affiliation(s)
- Ovidiu Marina
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | | | | |
Collapse
|
24
|
Yang W, Cai Q, Lui VWY, Everley PA, Kim J, Bhola N, Quesnelle KM, Zetter BR, Steen H, Freeman MR, Grandis JR. Quantitative proteomics analysis reveals molecular networks regulated by epidermal growth factor receptor level in head and neck cancer. J Proteome Res 2010; 9:3073-82. [PMID: 20426488 DOI: 10.1021/pr901211j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in up to 90% of head and neck cancer (HNC), where increased expression levels of EGFR correlate with poor prognosis. To date, EGFR expression levels have not predicted the clinical response to the EGFR-targeting therapies. Elucidation of the molecular mechanisms underlying anti-EGFR-induced antitumor effects may shed some light on the mechanisms of HNC resistance to EGFR-targeting therapeutics and provide novel targets for improving the treatment of HNC. Here, we conducted a quantitative proteomics analysis to determine the molecular networks regulated by EGFR levels in HNC by specifically knocking-down EGFR and employing stable isotope labeling with amino acids in cell culture (SILAC). Following data normalization to minimize systematic errors and Western blotting validation, 12 proteins (e.g., p21, stratifin, and maspin) and 24 proteins (e.g., cdc2 and MTA2) were found to be significantly upregulated or downregulated by EGFR knockdown, respectively. Bioinformatic analysis revealed that these proteins were mainly involved in long-chain fatty acid biosynthesis and beta-oxidation, cholesterol biosynthesis, cell proliferation, DNA replication, and apoptosis. Cell cycle analysis confirmed that G(2)/M phase progression was significantly inhibited by EGFR knockdown, a hypothesis generated from network modeling. Further investigation of these molecular networks may not only enhance our understanding of the antitumor mechanisms of EGFR targeting but also improve patient selection and provide novel targets for better therapeutics.
Collapse
Affiliation(s)
- Wei Yang
- Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sundar IK, Caito S, Yao H, Rahman I. Oxidative stress, thiol redox signaling methods in epigenetics. Methods Enzymol 2010; 474:213-44. [PMID: 20609913 DOI: 10.1016/s0076-6879(10)74013-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetics is referred to as heritable changes in gene expression but not encoded in the DNA sequence itself which occurs during posttranslational modifications in DNA and histones. These epigenetic modifications include histone acetylation, deacetylation, and methylation. Acetylation by histone acetyltransferases (HATs) of specific lysine residues on the N-terminal tail of core histones results in uncoiling of the DNA and increased accessibility to transcription factor binding. In contrast, histone deacetylation by histone deacetylases (HDACs) represses gene transcription by promoting DNA winding thereby limiting access to transcription factors. Reactive oxygen species (ROS) are involved in cellular redox alterations, such as amplification of proinflammatory and immunological responses, signaling pathways, activation of transcription factors (NF-kappaB and AP-1), chromatin remodeling (histone acetylation and deacetylation), histone/protein deacetylation by sirtuin 1 (SIRT1) and gene expression. The glutathione redox status plays an important role in protein modifications and signaling pathways, including effects on redox-sensitive transcription factors. Protein S-glutathiolation and mixed disulfide formation as candidate mechanisms for protein regulation during intracellular oxidative stress have gained a renewed impetus in view of their involvements in redox regulation of signaling proteins. A variety of methods are applied to study the epigenetic processes to elucidate the molecular mysteries underlying epigenetic inheritance. These include chromatin immunoprecipitation (ChIP), which is a powerful tool to study protein-DNA interaction and is widely used in many fields to study protein associated with chromatin, such as histone and its isoforms and transcription factors, across a defined DNA domain. Here, we describe some of the contemporary methods used to study oxidative stress and thiol redox signaling involved in epigenetic (histone acetylation, deacetylation, and methylation) and chromatin remodeling (HAT, HDAC, SIRT1) research.
Collapse
Affiliation(s)
- Isaac K Sundar
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | |
Collapse
|
26
|
Richter FM, Sander B, Golas MM, Stark H, Urlaub H. Merging molecular electron microscopy and mass spectrometry by carbon film-assisted endoproteinase digestion. Mol Cell Proteomics 2010; 9:1729-41. [PMID: 20530635 DOI: 10.1074/mcp.m110.001446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many fundamental processes in the cell are performed by complex macromolecular assemblies that comprise a large number of proteins. Numerous macromolecular assemblies are structurally rather fragile and may suffer during purification, resulting in the partial dissociation of the complexes. These limitations can be overcome by chemical fixation of the assemblies, and recently introduced protocols such as gradient fixation during ultracentrifugation (GraFix) offer advantages for the analysis of fragile macromolecular assemblies. The irreversible fixation, however, is thought to render macromolecular samples useless for studying their protein composition. We therefore developed a novel approach that possesses the advantages of fixation for structure determination by single particle electron microscopy while still allowing a correlative compositional analysis by mass spectrometry. In this method, which we call "electron microscopy carbon film-assisted digestion", macromolecular assemblies are chemically fixed and then adsorbed onto electron microscopical carbon films. Parallel, identically prepared specimens are then subjected to structural investigation by electron microscopy and proteomics analysis by mass spectrometry of the digested sample. As identical sample preparation protocols are used for electron microscopy and mass spectrometry, the results of both methods can directly be correlated. In addition, we demonstrate improved sensitivity and reproducibility of electron microscopy carbon film-assisted digestion as compared with standard protocols. We show that sample amounts of as low as 50 fmol are sufficient to obtain a comprehensive protein composition of two model complexes. We suggest our approach to be an optimization technique for the compositional analysis of macromolecules by mass spectrometry in general.
Collapse
|
27
|
Staquicini FI, Moeller BJ, Arap W, Pasqualini R. Combinatorial vascular targeting in translational medicine. Proteomics Clin Appl 2010; 4:626-32. [DOI: 10.1002/prca.200900213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 12/12/2022]
|
28
|
Tarchevsky IA, Yakovleva VG, Egorova AM. Salicylate-induced modification of plant proteomes (review). APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Zhu B, Zhai J, Zhu H, Kyprianou N. Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate 2010; 70:17-26. [PMID: 19725029 PMCID: PMC3762596 DOI: 10.1002/pros.21033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Prohibitin (PHB), a protein located on the inner mitochondrial membrane and nuclei, is an intracellular effector of transforming growth factor-beta (TGF-beta) signaling in prostate cancer cells. This study investigated the involvement of PHB in the apoptosis and survival outcomes of human prostate cancer cell to TGF-beta. shRNA PHB loss of function in prostate cancer cells led to enhanced apoptotic response to TGF-beta via Smad-dependent mechanism. METHOD TGF-beta activation of Raf-Erk intracellular signaling, led to PHB phosphorylation, decreased inner mitochondrial permeability, and increased cell survival. Calcein-based immunofluorescence studies revealed the functional involvement of PHB in maintaining inner mitochondrial membrane permeability as an integral component of TGF-beta induced apoptosis in prostate cancer cells. RESULTS These finding indicates that induction of TGF-beta apoptosis is mediated by Smad-dependent and Smad-independent signaling (MAPK) converging at PHB as a downstream effector regulating inner mitochondrial permeability. Putative PHB associated proteins were identified by subjecting TGF-beta treated cells to immunoprecipitation with anti-PHB, and mass spectrometry. A screen for the kinase specific phosphorylation sites of PHB revealed three protein kinase (PKC) binding sites. CONCLUSION Our results demonstrate that TGF-beta led to upregulation of the PKC inhibitor 14-3-3 protein and promoted its association with PHB, while PHB association with PKC-delta, was inhibited by the MEK1 inhibitor, documenting a critical interdependence between the MEK-ERK signaling and prohibitin phosphorylation. These findings suggest a dual role for PHB as a downstream determinant of the cellular response to TGF-beta via Smad-dependent pathway (apoptosis) and MAPK intracellular signaling (survival).
Collapse
Affiliation(s)
- Brian Zhu
- Department of Surgery, Division of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
30
|
Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics 2009; 9:54-70. [PMID: 19801377 DOI: 10.1074/mcp.m800448-mcp200] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-acylation (palmitoylation), a reversible post-translational modification, is critically involved in regulating protein subcellular localization, activity, stability, and multimeric complex assembly. However, proteome scale characterization of S-acylation has lagged far behind that of phosphorylation, and global analysis of the localization of S-acylated proteins within different membrane domains has not been reported. Here we describe a novel proteomics approach, designated palmitoyl protein identification and site characterization (PalmPISC), for proteome scale enrichment and characterization of S-acylated proteins extracted from lipid raft-enriched and non-raft membranes. In combination with label-free spectral counting quantitation, PalmPISC led to the identification of 67 known and 331 novel candidate S-acylated proteins as well as the localization of 25 known and 143 novel candidate S-acylation sites. Palmitoyl acyltransferases DHHC5, DHHC6, and DHHC8 appear to be S-acylated on three cysteine residues within a novel CCX(7-13)C(S/T) motif downstream of a conserved Asp-His-His-Cys cysteine-rich domain, which may be a potential mechanism for regulating acyltransferase specificity and/or activity. S-Acylation may tether cytoplasmic acyl-protein thioesterase-1 to membranes, thus facilitating its interaction with and deacylation of membrane-associated S-acylated proteins. Our findings also suggest that certain ribosomal proteins may be targeted to lipid rafts via S-acylation, possibly to facilitate regulation of ribosomal protein activity and/or dynamic synthesis of lipid raft proteins in situ. In addition, bioinformatics analysis suggested that S-acylated proteins are highly enriched within core complexes of caveolae and tetraspanin-enriched microdomains, both cholesterol-rich membrane structures. The PalmPISC approach and the large scale human S-acylated protein data set are expected to provide powerful tools to facilitate our understanding of the functions and mechanisms of protein S-acylation.
Collapse
Affiliation(s)
- Wei Yang
- Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Li X, Xie C, Jin Q, Liu M, He Q, Cao R, Lin Y, Li J, Li Y, Chen P, Liang S. Proteomic screen for multiprotein complexes in synaptic plasma membrane from rat hippocampus by blue native gel electrophoresis and tandem mass spectrometry. J Proteome Res 2009; 8:3475-86. [PMID: 19432478 DOI: 10.1021/pr900101d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuronal synapses are specialized sites for information exchange between neurons. Many diseases, such as addiction and mood disorders, likely result from altered expression of synaptic proteins, or altered formation of synaptic complexes involved in neurotransmission or neuroplasticity. A detailed description of native multiprotein complexes in synaptic plasma membranes (PM) is therefore essential for understanding biological mechanisms and disease processes. For the first time in this study, two-dimensional Blue Native/SDS-PAGE electrophoresis, combined with tandem mass spectrometry, was used to screen multiprotein complexes in synaptic plasma membranes from rat hippocampus. As a result, 514 unique proteins were identified, of which 36% were integral membrane proteins. In addition, 19 potentially novel and known heterooligomeric multiprotein complexes were found, such as the SNARE and ATPase complexes. A potentially novel protein complex, involving syntaxin, synapsin I and Na+/K+ ATPase alpha-1, was further confirmed by co-immunoprecipitation and immunofluorescence staining. As demonstrated here, Blue Native-PAGE is a powerful tool for the separation of hydrophobic membrane proteins. The combination of Blue Native-PAGE and mass spectrometry could systematically identify multiprotein complexes.
Collapse
Affiliation(s)
- Xuanwen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Committee, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zeke A, Lukács M, Lim WA, Reményi A. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol 2009; 19:364-74. [PMID: 19651513 DOI: 10.1016/j.tcb.2009.05.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/17/2009] [Accepted: 05/18/2009] [Indexed: 12/12/2022]
Abstract
Scaffold proteins influence cellular signalling by binding to multiple signalling enzymes, receptors or ion channels. Although normally devoid of catalytic activity, they have a big impact on controlling the flow of signalling information. By assembling signalling proteins into complexes, they play the part of signal processing hubs. As we learn more about the way signalling components are linked into natural signalling circuits, researchers are becoming interested in building non-natural signalling pathways to test our knowledge and/or to intentionally reprogram cellular behaviour. In this review, we discuss the role of scaffold proteins as efficient tools for assembling intracellular signalling complexes, both natural and artificial.
Collapse
Affiliation(s)
- András Zeke
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | | | | | | |
Collapse
|
33
|
Almeida RM, Pauleta SR, Moura I, Moura JJG. Rubredoxin as a paramagnetic relaxation-inducing probe. J Inorg Biochem 2009; 103:1245-53. [PMID: 19651443 DOI: 10.1016/j.jinorgbio.2009.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 11/15/2022]
Abstract
The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with unpaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c(3) was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M2(1) and M18(1). The rubredoxin binding surface in the complex with cytochrome c(3) was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c(3) are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in (1)HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes.
Collapse
Affiliation(s)
- Rui M Almeida
- REQUIMTE/CQFB, Departamento de Química, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
34
|
Zheng YZ, Foster LJ. Contributions of quantitative proteomics to understanding membrane microdomains. J Lipid Res 2009; 50:1976-85. [PMID: 19578161 PMCID: PMC2739763 DOI: 10.1194/jlr.r900018-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane microdomains, e.g., lipid rafts and caveolae, are crucial cell surface organelles responsible for many cellular signaling and communication events, which makes the characterization of their proteomes both interesting and valuable. They are large cellular complexes comprised of specific proteins and lipids, yet they are simple enough in composition to be amenable to modern LC/MS/MS methods for proteomics. However, the proteomic characterization of membrane microdomains by traditional qualitative mass spectrometry is insufficient for distinguishing true components of the microdomains from copurifying contaminants or for evaluating dynamic changes in the proteome compositions. In this review, we discuss the contributions quantitative proteomics has made to our understanding of the biology of membrane microdomains.
Collapse
Affiliation(s)
- Yu Zi Zheng
- Centre for High-Throughput Biology and Department of Biochemistry and Molecular Biology, 2125 East Mall, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
35
|
Kaiser WJ, Holbrook LM, Tucker KL, Stanley RG, Gibbins JM. A Functional Proteomic Method for the Enrichment of Peripheral Membrane Proteins Reveals the Collagen Binding Protein Hsp47 Is Exposed on the Surface of Activated Human Platelets. J Proteome Res 2009; 8:2903-14. [DOI: 10.1021/pr900027j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William J. Kaiser
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Lisa-Marie Holbrook
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Katherine L. Tucker
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Ronald G. Stanley
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| |
Collapse
|
36
|
Alex P, Gucek M, Li X. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies. Inflamm Bowel Dis 2009; 15:616-29. [PMID: 18844215 PMCID: PMC2667948 DOI: 10.1002/ibd.20652] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, heterogeneous, and multifactorial intestinal inflammatory disorders. Major challenges in IBD research include identification of major pathogenic alterations of genes/proteins as well as effective biomarkers for early diagnosis, prognosis, and prediction of therapeutic response. Since proteins govern cellular structure and biological function, a wide selection of proteomic approaches enables effective characterization of IBD pathogenesis by investigating the dynamic nature of protein expression, cellular and subcellular distribution, posttranslational modifications, and interactions at both the cellular and subcellular levels. The aims of this review are to 1) highlight the current status of proteomic studies of IBD, and 2) introduce the available and emerging proteomic technologies that have potential applications in the study of IBD. These technologies include various mass spectrometry technologies, quantitative proteomics (2D-PAGE, ICAT, SILAC, iTRAQ), protein/antibody arrays, and multi-epitope-ligand cartography. This review also presents information and methodologies, from sample selection and enrichment to protein identification, that are not only essential but also particularly relevant to IBD research. The potential future application of these technologies is expected to have a significant impact on the discovery of novel biomarkers and key pathogenic factors for IBD.
Collapse
Affiliation(s)
- Philip Alex
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Arthur Günzl
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington Connecticut
| | | |
Collapse
|
38
|
Brembilla NC, Cohen-Salmon I, Weber J, Rüegg C, Quadroni M, Harshman K, Doucey MA. Profiling of T-cell receptor signaling complex assembly in human CD4 T-lymphocytes using RP protein arrays. Proteomics 2009; 9:299-309. [DOI: 10.1002/pmic.200800359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Daulat AM, Maurice P, Jockers R. Recent methodological advances in the discovery of GPCR-associated protein complexes. Trends Pharmacol Sci 2008; 30:72-8. [PMID: 19100631 DOI: 10.1016/j.tips.2008.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022]
Abstract
Protein-interaction networks have important roles in cellular homeostasis and the generation of complexity in biological systems. G-protein-coupled receptors (GPCRs), the largest family of membrane receptors and important drug targets, are integral parts of these networks. Ligand stimulation and the dynamic interaction with GPCR-associated protein complexes (GAPCs) constitute two important regulatory mechanisms of GPCR function. Several genomic and proteomic approaches have been developed to identify GAPCs in the past. However, this task turned out to be particularly demanding owing to difficulties in preserving the complex three-dimensional GPCR structure during receptor solubilization and to inherent limitations in the use of isolated receptor domains as bait. Newly emerging methods have the potential to overcome these limitations and will certainly boost the identification of functionally relevant GAPCs to finally increase our knowledge of the regulation of GPCRs and provide novel drug targets. Here, we focus on the comparison of two complementary GAPC purification strategies, which are based on soluble GPCR subdomains and entire GPCRs.
Collapse
Affiliation(s)
- Avais M Daulat
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Department of Cell Biology, F-75014 Paris, France
| | | | | |
Collapse
|