1
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
2
|
Hartanto H, Wu M, Lam ML, Chen TH. Microfluidic immunoassay for detection of serological antibodies: A potential tool for rapid evaluation of immunity against SARS-CoV-2. BIOMICROFLUIDICS 2020; 14:061507. [PMID: 33343783 PMCID: PMC7738199 DOI: 10.1063/5.0031521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 05/06/2023]
Abstract
In December 2019, coronavirus disease 2019 became a pandemic affecting more than 200 countries and territories. Millions of lives are still affected because of mandatory quarantines, which hamstring economies and induce panic. Immunology plays a major role in the modern field of medicine, especially against virulent infectious diseases. In this field, neutralizing antibodies are heavily studied because they reflect the level of infection and individuals' immune status, which are essential when considering resumption of work, flight travel, and border entry control. More importantly, it also allows evaluating the antiviral vaccine efficacy as vaccines are still known for being the ultimate intervention method to inhibit the rapid spread of virulent infectious diseases. In this Review, we first introduce the host immune response after the infection of SARS-CoV-2 and discuss the latest results using conventional immunoassays. Next, as an enabling platform for detection with sufficient sensitivity while saving analysis time and sample size, the progress of microfluidic-based immunoassays is discussed and compared based on surface modification, microfluidic kinetics, signal output, signal amplification, sample matrix, and the detection of anti-SARS-CoV-2 antibodies. Based on the overall comparison, this Review concludes by proposing the future integration of visual quantitative signals on microfluidic devices as a more suitable approach for general use and large-scale surveillance.
Collapse
Affiliation(s)
- Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Miu Ling Lam
- School of Creative Media, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
|
4
|
Electrochemical Immunosensor for Human IgE Using Ferrocene Self-Assembled Monolayers Modified ITO Electrode. BIOSENSORS-BASEL 2020; 10:bios10040038. [PMID: 32295270 PMCID: PMC7235775 DOI: 10.3390/bios10040038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 11/17/2022]
Abstract
The immunoglobulin E (IgE) level in serum is an important factor in the examination of allergy. Ferrocene (Fc)-modified self-assembled monolayers (SAMs) were placed on an indium tin oxide (ITO) electrode as a sensing layer for the detection of human IgE. The Fc moiety in the SAMs facilitated the electron transfer through the organic SAMs layer and electrocatalytic signal amplification. The electrochemical measurement was accomplished after the sandwich type immobilization of the receptor antibody, target human IgE, and enzyme conjugated secondary antibody. The enzyme product, p-aminophenol, was quantitatively analyzed by redox cycling via Fc. In addition, the electrochemical impedance spectroscopy (EIS) was investigated for the detection of IgE. The limit of detection (LOD), limit of quantification (LOQ), and dynamic range of the electrochemical sensor were 3 IU/mL, 10 IU/mL, and from 10 IU/mL to 100 IU/mL, respectively.
Collapse
|
5
|
Castaño N, Cordts SC, Nadeau KC, Tsai M, Galli SJ, Tang SKY. Microfluidic methods for precision diagnostics in food allergy. BIOMICROFLUIDICS 2020; 14:021503. [PMID: 32266046 PMCID: PMC7127910 DOI: 10.1063/1.5144135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/12/2020] [Indexed: 05/29/2023]
Abstract
Food allergy has reached epidemic proportions and has become a significant source of healthcare burden. Oral food challenge, the gold standard for food allergy assessment, often is not performed because it places the patient at risk of developing anaphylaxis. However, conventional alternative food allergy tests lack a sufficient predictive value. Therefore, there is a critical need for better diagnostic tests that are both accurate and safe. Microfluidic methods have the potential of helping one to address such needs and to personalize the diagnostics. This article first reviews conventional diagnostic approaches used in food allergy. Second, it reviews recent efforts to develop novel biomarkers and in vitro diagnostics. Third, it summarizes the microfluidic methods developed thus far for food allergy diagnosis. The article concludes with a discussion of future opportunities for using microfluidic methods for achieving precision diagnostics in food allergy, including multiplexing the detection of multiple biomarkers, sampling of tissue-resident cytokines and immune cells, and multi-organ-on-a-chip technology.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Seth C. Cordts
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Kari C. Nadeau
- Department of Pediatrics—Allergy and Clinical Immunology, Stanford University, Stanford, California 94305, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | | | - Sindy K. Y. Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
6
|
Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays. Anal Chim Acta 2017; 983:189-197. [DOI: 10.1016/j.aca.2017.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
|
7
|
Sievers S, Cretich M, Gagni P, Ahrens B, Grishina G, Sampson HA, Niggemann B, Chiari M, Beyer K. Performance of a polymer coated silicon microarray for simultaneous detection of food allergen-specific IgE and IgG4. Clin Exp Allergy 2017; 47:1057-1068. [DOI: 10.1111/cea.12929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/13/2017] [Accepted: 03/20/2017] [Indexed: 01/26/2023]
Affiliation(s)
- S. Sievers
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
- Department of Biology, Chemistry and Pharmacy; Free University; Berlin Germany
| | - M. Cretich
- Istituto di Chimica del Riconoscimento Molecolare (ICRM); Consiglio Nazionale delle Ricerche; Milano Italy
| | - P. Gagni
- Istituto di Chimica del Riconoscimento Molecolare (ICRM); Consiglio Nazionale delle Ricerche; Milano Italy
| | - B. Ahrens
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
| | - G. Grishina
- Icahn School of Medicine at Mount Sinai; New York NY USA
| | - H. A. Sampson
- Icahn School of Medicine at Mount Sinai; New York NY USA
| | - B. Niggemann
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
| | - M. Chiari
- Istituto di Chimica del Riconoscimento Molecolare (ICRM); Consiglio Nazionale delle Ricerche; Milano Italy
| | - K. Beyer
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
- Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
8
|
Development of nanostructures in the diagnosis of drug hypersensitivity reactions. Curr Opin Allergy Clin Immunol 2016; 16:300-7. [DOI: 10.1097/aci.0000000000000282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Du L, Yang T, Zhao M, Tao Y, Luo L, Wang L, Liu C. Study on Improving Thickness Uniformity of Microfluidic Chip Mold in the Electroforming Process. MICROMACHINES 2016; 7:mi7010007. [PMID: 30407379 PMCID: PMC6190208 DOI: 10.3390/mi7010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 11/24/2022]
Abstract
Electroformed microfluidic chip mold faces the problem of uneven thickness, which decreases the dimensional accuracy of the mold, and increases the production cost. To fabricate a mold with uniform thickness, two methods are investigated. Firstly, experiments are carried out to study how the ultrasonic agitation affects the thickness uniformity of the mold. It is found that the thickness uniformity is maximally improved by about 30% after 2 h electroforming under 200 kHz and 500 W ultrasonic agitation. Secondly, adding a second cathode, a method suitable for long-time electroforming is studied by numerical simulation. The simulation results show that with a 4 mm width second cathode used, the thickness uniformity is improved by about 30% after 2 h of electroforming, and that with electroforming time extended, the thickness uniformity is improved more obviously. After 22 h electroforming, the thickness uniformity is increased by about 45%. Finally, by comparing two methods, the method of adding a second cathode is chosen, and a microfluidic chip mold is made with the help of a specially designed second cathode. The result shows that the thickness uniformity of the mold is increased by about 50%, which is in good agreement with the simulation results.
Collapse
Affiliation(s)
- Liqun Du
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Tong Yang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Ming Zhao
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Yousheng Tao
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Lei Luo
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Lei Wang
- CapitalBio Corporation, Beijing 101111, China.
| | - Chong Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China.
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
3-D microarray and its microfabrication-free fluidic immunoassay device. Anal Chim Acta 2015; 889:187-93. [DOI: 10.1016/j.aca.2015.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022]
|
11
|
Platt GW, Damin F, Swann MJ, Metton I, Skorski G, Cretich M, Chiari M. Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosens Bioelectron 2014; 52:82-8. [DOI: 10.1016/j.bios.2013.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/01/2022]
|
12
|
Cretich M, Damin F, Chiari M. Protein microarray technology: how far off is routine diagnostics? Analyst 2014; 139:528-42. [DOI: 10.1039/c3an01619f] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Xiao L, Zheng X, Zhao T, Sun L, Liu F, Gao G, Dong A. Controllable immobilization of polyacrylamide onto glass slide: synthesis and characterization. Colloid Polym Sci 2013; 291:2359-2364. [PMID: 24058247 PMCID: PMC3776275 DOI: 10.1007/s00396-013-2981-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
Abstract
A novel route was introduced to synthesize dense polyacrylamide (PAM) onto the glass slide surface. To investigate the surface chemistry of the PAM on the glass slides, X-ray photoelectron spectroscopy (XPS) was utilized to obtain detailed chemical state information on the PAM layer constituents. The XPS peak data were consistent with the presented model of the PAM on the glass slide surface. Scanning electron microscopy and atomic force microscope data indicated the presence of PAM on the glass slides, which consist of nodules. The results showed that PAM was successfully immobilized onto glass slides with a two-tier structure under aqueous condition and a monolayer structure under anhydrous condition. Compared with those under aqueous condition, the controllability of the molecular layer on glass slides and the reproducibility under anhydrous condition were much better, which makes anhydrous condition an advisable condition for the study of the reaction mechanisms of glass slides modified by PAM.
Collapse
Affiliation(s)
- Linghan Xiao
- College of Chemistry and MacDiarmid Laboratory, Jilin University, Changchun, 130021 People’s Republic of China
| | - Xin Zheng
- College of Chemistry and MacDiarmid Laboratory, Jilin University, Changchun, 130021 People’s Republic of China
| | - Tianyi Zhao
- College of Chemistry and MacDiarmid Laboratory, Jilin University, Changchun, 130021 People’s Republic of China
| | - Liying Sun
- College of Chemistry and MacDiarmid Laboratory, Jilin University, Changchun, 130021 People’s Republic of China
| | - Fengqi Liu
- College of Chemistry and MacDiarmid Laboratory, Jilin University, Changchun, 130021 People’s Republic of China
| | - Ge Gao
- College of Chemistry and MacDiarmid Laboratory, Jilin University, Changchun, 130021 People’s Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 People’s Republic of China
| |
Collapse
|
14
|
Proteomics-based allergen analysis in plants. J Proteomics 2013; 93:40-9. [PMID: 23568023 DOI: 10.1016/j.jprot.2013.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/16/2013] [Accepted: 03/19/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Plants may trigger hypersensitivity reactions when individuals with allergies consume foods derived from plant materials or inhale plant pollen. As each plant food or pollen contains multiple allergens, proteomics is a powerful tool to detect the allergens present. Allergen-targeted proteomics, termed allergenomics, has been used for comprehensive identification and/or quantification of plant allergens, because it is a simple and inexpensive tool for rapid detection of proteins that bind to IgE. There are increasing numbers of reports on the applications of allergenomics. In this review, we outline some of the applications of proteomics, including: (i) identification of novel allergens, (ii) allergic diagnoses, (iii) quantification of allergens, and (iv) natural diversity of allergens, and finally discuss (v) the use of allergenomics for safety assessment of genetically modified (GM) plants. BIOLOGICAL SIGNIFICANCE Recently, the number of allergic patients is increasing. Therefore, a comprehensive analysis of allergens (allergenomics) in plants is highly important for not only risk assessment of food plants but also diagnosis of allergic symptoms. In this manuscript, we reviewed the recent progress of allergenomics for identification, quantification and profiling of allergens. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
|
15
|
Impact of immobilization support on colorimetric microarrays performances. Biosens Bioelectron 2012; 35:94-100. [PMID: 22425224 DOI: 10.1016/j.bios.2012.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/01/2012] [Accepted: 02/15/2012] [Indexed: 11/20/2022]
Abstract
We report here a comparison of support materials for colorimetric hybridization assays on microarrays. Four surfaces with various chemistries and architectures (roughness and porosity) were evaluated: (i) bare and (ii) activated polystyrene surfaces classically used for ELISA; (iii) a double-sided adhesive support; and (iv) a porous nitrocellulose/cellulose acetate membrane. Each substrate was functionalized with a microarray of probes and subjected to an enzymatic colorimetric DNA hybridization test. Tests were carried out in a 96-well assembly suitable for automated high-throughput analysis. Colorimetry results, microscopy observations and a chemiluminescence study showed that the test efficiency not only depends on the surface probe density but that the capacity of the material to retain the colored enzymatic product is also a critical parameter. All parameters being considered, the adhesive coated surface proposes the best surface properties for efficient colorimetric microarrays.
Collapse
|
16
|
Nam EJ, Kim EJ, Wark AW, Rho S, Kim H, Lee HJ. Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions. Analyst 2012; 137:2011-6. [PMID: 22302221 DOI: 10.1039/c2an15994e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel electrochemical detection methodology is described for the femtomolar detection of proteins which utilizes both DNA aptamer-functionalized nanoparticles and a surface enzymatic reaction. Immunoglobulin E (IgE) was used as a model protein biomarker, which possesses two distinct epitopes for antibody (anti-IgE) and DNA aptamer binding. A surface sandwich assay format was utilized involving the specific adsorption of IgE onto a gold electrode surface that was pre-modified with a monolayer of aptamer-nanoparticle conjugates followed by the specific interaction of alkaline phosphatase (ALP) conjugated anti-IgE. To clearly demonstrate the signal enhancement associated with nanoparticle use, anodic current measurements of the ALP catalyzed oxidation of the enzyme substrate 4-aminophenylphosphate (APP) were also compared with electrode surfaces upon which the aptamer was directly attached. The detection of an unlabelled protein at concentrations as low as 5 fM is a significant improvement compared to conventional electrochemical-based immunoassay approaches and provides a foundation for the practical use and incorporation of nanoparticle-enhanced detection into electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Eun Ji Nam
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu-city, 702-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Protein chips are becoming a key technology in proteomic research and medical diagnostics. Surface chemistry for immobilization of proteins forms the basis for assay design and determines the properties of protein microarrays. Optimal substrates provide a homogeneous environment for probes, preventing loss of biological activity and unspecific adsorption. Numerous immobilization approaches, based on covalent binding, affinity, or adsorption, have been proposed thus far, and these represent the toolbox for choosing optimized strategies for each individual application.
Collapse
|
18
|
|
19
|
Teste B, Malloggi F, Siaugue JM, Varenne A, Kanoufi F, Descroix S. Microchip integrating magnetic nanoparticles for allergy diagnosis. LAB ON A CHIP 2011; 11:4207-4213. [PMID: 22033539 DOI: 10.1039/c1lc20809h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report on the development of a simple and easy to use microchip dedicated to allergy diagnosis. This microchip combines both the advantages of homogeneous immunoassays i.e. species diffusion and heterogeneous immunoassays i.e. easy separation and preconcentration steps. In vitro allergy diagnosis is based on specific Immunoglobulin E (IgE) quantitation, in that way we have developed and integrated magnetic core-shell nanoparticles (MCSNPs) as an IgE capture nanoplatform in a microdevice taking benefit from both their magnetic and colloidal properties. Integrating such immunosupport allows to perform the target analyte (IgE) capture in the colloidal phase thus increasing the analyte capture kinetics since both immunological partners are diffusing during the immune reaction. This colloidal approach improves 1000 times the analyte capture kinetics compared to conventional methods. Moreover, based on the MCSNPs' magnetic properties and on the magnetic chamber we have previously developed the MCSNPs and therefore the target can be confined and preconcentrated within the microdevice prior to the detection step. The MCSNPs preconcentration factor achieved was about 35,000 and allows to reach high sensitivity thus avoiding catalytic amplification during the detection step. The developed microchip offers many advantages: the analytical procedure was fully integrated on-chip, analyses were performed in short assay time (20 min), the sample and reagents consumption was reduced to few microlitres (5 μL) while a low limit of detection can be achieved (about 1 ng mL(-1)).
Collapse
Affiliation(s)
- Bruno Teste
- Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA), UMR 7195 CNRS-ESPCI-ENSCP, France
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Microfluidic devices exhibit a great promising development in clinical diagnosis and disease screening due to their advantages of precise controlling of fluid flow, requirement of miniamount sample, rapid reaction speed and convenient integration. In this paper, the improvements of microfluidic diagnostic technologies in recent years are reviewed. The applications and developments of on-chip disease marker detection, microfluidic cell selection and cell drug metabolism, and diagnostic micro-devices are discussed.
Collapse
Affiliation(s)
- Haifang Li
- School of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | |
Collapse
|
21
|
Shreffler WG. Microarrayed recombinant allergens for diagnostic testing. J Allergy Clin Immunol 2011; 127:843-9; quiz 850-1. [PMID: 21458654 DOI: 10.1016/j.jaci.2011.02.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/17/2022]
Abstract
The development of protein microarray-based immunoassays and the availability of recombinant allergens have, to a significant extent, emerged together over the past decade. Their long-anticipated wider application to allergy diagnosis has recently begun to accelerate. This review discusses some of the strengths and weaknesses of molecularly defined allergy testing and the microarray platform. Several recent applications of microarray assays to allergy testing are also summarized. Promising findings, particularly in the context of food and latex allergy, point to the potential for greater resolution between clinical reactivity and asymptomatic sensitization with this platform.
Collapse
Affiliation(s)
- Wayne G Shreffler
- Food Allergy Center and Center for Immunology and Inflammatory Diseases at Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device. Biomed Microdevices 2011; 13:769-77. [DOI: 10.1007/s10544-011-9547-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Le Goff GC, Blum LJ, Marquette CA. Enhanced Colorimetric Detection on Porous Microarrays Using in Situ Substrate Production. Anal Chem 2011; 83:3610-5. [DOI: 10.1021/ac200306d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gaelle C. Le Goff
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université Lyon 1, CNRS 5246 ICBMS, Bâtiment CPE-43, bd du 11 novembre 1918-69622 Villeurbanne, Cedex, France
| | - Loïc J. Blum
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université Lyon 1, CNRS 5246 ICBMS, Bâtiment CPE-43, bd du 11 novembre 1918-69622 Villeurbanne, Cedex, France
| | - Christophe A. Marquette
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université Lyon 1, CNRS 5246 ICBMS, Bâtiment CPE-43, bd du 11 novembre 1918-69622 Villeurbanne, Cedex, France
| |
Collapse
|
24
|
Microarrayed allergen molecules for the diagnosis of allergic diseases. Curr Allergy Asthma Rep 2010; 10:357-64. [PMID: 20596902 DOI: 10.1007/s11882-010-0132-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
IgE-mediated allergic diseases are among the most prevalent diseases worldwide. The use of extracts in the skin test and the additional use of IgE testing still represent the current basis for the diagnostic work-up. During the past 30 years, knowledge of the molecular structure of allergens has increased dramatically, and the characterization and production of allergenic molecules, as natural purified compounds or recombinant products, is allowing us to approach the allergy diagnostic work-up differently. Much of this is based on the adoption of microtechnology since the first release of a biochip for IgE detection. Its use has prompted the development of new concepts linked to the diagnosis of allergic diseases. This review describes the background of allergy diagnosis and the tools currently used for specific IgE detection. It gives insight into the most recent advancement in the field of biotechnology leading to allergenic molecule availability, microtechnology leading to the routine use of protein biochips for IgE detection, and how they should be combined with information technology.
Collapse
|
25
|
Le Goff GC, Desmet C, Brès JC, Rigal D, Blum LJ, Marquette CA. Multipurpose high-throughput filtering microarrays (HiFi) for DNA and protein assays. Biosens Bioelectron 2010; 26:1142-51. [DOI: 10.1016/j.bios.2010.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
26
|
Lucas J. Microarrays: molecular allergology and nanotechnology for personalised medicine (I). Allergol Immunopathol (Madr) 2010; 38:153-61. [PMID: 20398997 DOI: 10.1016/j.aller.2010.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 02/07/2023]
Abstract
The diagnosis of antibody-mediated allergic disorders is based on the clinical findings and the detection of allergen-specific IgE based on in vitro and in vivo techniques, together with allergen provocation tests. In vitro diagnostic techniques have progressed enormously following the introduction of the advances made in proteomics and nanotechnology--offering tools for the diagnosis and investigation of allergy at molecular level. The most advanced developments are the microarray techniques, which in genomics allowed rapid description of the human genetic code, and which now have been applied to proteomics, broadening the field for research and clinical use. Together with these technological advances, the characterisation of most of the different proteins generating specific IgE and which conform each natural allergen, as well as their purification or genetic engineering-based synthesis, have been crucial elements--offering the possibility of identifying disease-causing allergens at molecular level, establishing a component-resolved diagnosis (CRD), using them to study the natural course of the disease, and applying them to improvements in specific immunotherapy. Microarrays of allergic components offer results relating to hundreds of these allergenic components in a single test, and use a small amount of serum that can be obtained from capillary blood. The availability of new molecules will allow the development of panels including new allergenic components and sources, which will require evaluation for clinical use. The present study reviews these new developments, component-resolved diagnosis, and the development of microarray techniques as a critical element for furthering our knowledge of allergic disease.
Collapse
|
27
|
Immunoassays in microfluidic systems. Anal Bioanal Chem 2010; 397:991-1007. [PMID: 20422163 DOI: 10.1007/s00216-010-3678-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/21/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Immunoassays have greatly benefited from miniaturization in microfluidic systems. This review, which summarizes developments in microfluidics-based immunoassays since 2000, includes four sections, focusing on the configurations of immunoassays that have been implemented in microfluidics, the main fluid handling modalities that have been used for microfluidic immunoassays, multiplexed immunoassays in microfluidic platforms, and the emergence of label-free detection techniques. The field of microfluidic immunoassays is continuously improving and has great promise for the future.
Collapse
|
28
|
Saaem I, Ma KS, Marchi AN, LaBean TH, Tian J. In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate. ACS APPLIED MATERIALS & INTERFACES 2010; 2:491-497. [PMID: 20356196 DOI: 10.1021/am900884b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.
Collapse
Affiliation(s)
- Ishtiaq Saaem
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
29
|
Cretich M, di Carlo G, Longhi R, Gotti C, Spinella N, Coffa S, Galati C, Renna L, Chiari M. High sensitivity protein assays on microarray silicon slides. Anal Chem 2009; 81:5197-203. [PMID: 19485342 DOI: 10.1021/ac900658c] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this work, we report on the improvement of microarray sensitivity provided by a crystalline silicon substrate coated with thermal silicon oxide functionalized by a polymeric coating. The improvement is intended for experimental procedures and instrumentations typically involved in microarray technology, such as fluorescence labeling and a confocal laser scanning apparatus. The optimized layer of thermally grown silicon oxide (SiO(2)) of a highly reproducible thickness, low roughness, and fluorescence background provides fluorescence intensification due to the constructive interference between the incident and reflected waves of the fluorescence radiation. The oxide surface is coated by a copolymer of N,N-dimethylacrylamide, N-acryloyloxysuccinimide, and 3-(trimethoxysilyl)propyl methacrylate, copoly(DMA-NAS-MAPS), which forms, by a simple and robust procedure, a functional nanometric film. The polymeric coating with a thickness that does not appreciably alter the optical properties of the silicon oxide confers to the slides optimal binding specificity leading to a high signal-to-noise ratio. The present work aims to demonstrate the great potential that exists by combining an optimized reflective substrate with a high performance surface chemistry. Moreover, the techniques chosen for both the substrate and surface chemistry are simple, inexpensive, and amenable to mass production. The present application highlights their potential use for diagnostic applications of real clinical relevance. The coated silicon slides, tested in protein and peptide microarrays for detection of specific antibodies, lead to a 5-10-fold enhancement of the fluorescence signals in comparison to glass slides.
Collapse
Affiliation(s)
- Marina Cretich
- Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|