1
|
Hwang JR, Chou CL, Medvar B, Knepper MA, Jung HJ. Identification of β-catenin-interacting proteins in nuclear fractions of native rat collecting duct cells. Am J Physiol Renal Physiol 2017; 313:F30-F46. [PMID: 28298358 PMCID: PMC5538839 DOI: 10.1152/ajprenal.00054.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023] Open
Abstract
The gene encoding the aquaporin-2 water channel is regulated transcriptionally in response to vasopressin. In the renal collecting duct, vasopressin stimulates the nuclear translocation and phosphorylation (at Ser552) of β-catenin, a multifunctional protein that acts as a transcriptional coregulator in the nucleus. The purpose of this study was to identify β-catenin-interacting proteins that might be involved in transcriptional regulation in rat inner medullary collecting duct (IMCD) cells, using experimental and computational approaches. We used a standard chromatin immunoprecipitation procedure coupled to mass spectrometry (ChIP-MS) in a nuclear fraction isolated from rat IMCD suspensions. Over four biological replicates, we reproducibly identified 43 β-catenin-binding proteins, including several known β-catenin-binding partners as well as novel interacting proteins. Multiple proteins involved in transcriptional regulation were identified (Taf1, Jup, Tdrd3, Cdh1, Cenpj, and several histones). Many of the identified β-catenin-binding partners were found in prior studies to translocate to the nucleus in response to vasopressin. There was only one DNA-binding transcription factor (TF), specifically Taf1, part of the RNA-polymerase II preinitiation complex. To identify sequence-specific TFs that might interact with β-catenin, Bayes' theorem was used to integrate data from several information sources. The analysis identified several TFs with potential binding sites in the Aqp2 gene promoter that could interact with β-catenin in the regulation of Aqp2 gene transcription, specifically Jun, Junb, Jund, Atf1, Atf2, Mef2d, Usf1, Max, Pou2f1, and Rxra. The findings provide information necessary for modeling the transcriptional response to vasopressin.
Collapse
Affiliation(s)
- Jacqueline R Hwang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Barbara Medvar
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Jia Y, Jarrett HW. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose. Anal Biochem 2015; 482:1-6. [PMID: 25935261 PMCID: PMC4458446 DOI: 10.1016/j.ab.2015.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022]
Abstract
The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach.
Collapse
Affiliation(s)
- Yinshan Jia
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Harry W Jarrett
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
3
|
Nagore LI, Zhou Y, Nadeau RJ, Jia Y, Jarrett HW. Promoter trapping method: transcription factor purification using human telomerase reverse transcriptase promoter. Proteome Sci 2014; 12:53. [PMID: 25425973 PMCID: PMC4240814 DOI: 10.1186/s12953-014-0053-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/20/2014] [Indexed: 12/02/2022] Open
Abstract
Background Transcription factors bind to response elements on the promoter regions of genes to regulate transcriptional activity. One of the major problems with identifying transcription factors is their low abundance relative to other proteins in the cell. Developing a purification technique specific for transcription factors is crucial to the understanding of gene regulation. Promoter trapping is a method developed that uses the promoter regions as bait to trap proteins of interest and then purified using column chromatography. Here we utilize this technique to study the telomerase promoter, which has increased transcriptional activity in cancer cells. Gaining insight on how to control the enzyme at the promoter level may give new routes towards cancer treatments. Results Our findings show that the telomerase promoter (−170 - +91) and Promoter Trapping isolate a transcriptionally active and reproducible complex, when analyzed by liquid chromatography tandem mass spectrometry. We were also able to identify transcription factors, including AP-2 and SP1 known to bind this promoter, as well as show that these two proteins can bind to each other’s response element. Conclusion Here we focus on verifying the ability and versatility of Promoter Trapping coupled with additional well-characterized methods to identify already known factors responsible for telomerase transcriptional regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0053-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda I Nagore
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - YanWen Zhou
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Robert J Nadeau
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - YinShan Jia
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Harry W Jarrett
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| |
Collapse
|
4
|
Jia Y, Larionov O, Jarrett HW. Coupling of deoxyribonucleic acid to solid supports using 3' terminal ribose incorporation. J Chromatogr A 2014; 1339:73-9. [PMID: 24671039 DOI: 10.1016/j.chroma.2014.02.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
To develop a new form of DNA coupling under mild reaction and coupling conditions, DNA oligonucleotides were synthesized containing a 3' ribonucleotide. Upon reaction with millimolar sodium metaperiodate (NaIO4), the ribose is oxidized to a dialdehyde at pH 6.8. This reaction is complete in 30min, is quenched with millimolar sodium metabisulfite (Na2S2O5) and is then suitable for coupling to hydrazide-agarose supports. Coupling occurs with a half-time of 27min and 80% couples in 2h. The EP18 oligonucleotide which binds to the CAAT enhancer binding protein (C/EBP) was synthesized with a 3' ribose (rEP18) and coupled to hydrazide-agarose. The columns prepared show no significant loss of the oligonucleotide after 50 days. A crude bacterial extract from cells expressing a chimeric fusion protein of GFP-C/EBP was applied to the columns and eluted with different salt concentrations. The active protein elutes in 0.5M NaCl and SDS-PAGE/silver stained gels show a single major band which comigrates with GFP-C/EBP as well as three minor contaminants. This provides a new alternative way of coupling DNA to solid supports using mild chemistry which is non-detrimental to the DNA and can be performed if required in the presence of nuclear extract.
Collapse
Affiliation(s)
- Yinshan Jia
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78149, United States
| | - Oleg Larionov
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78149, United States
| | - Harry W Jarrett
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78149, United States.
| |
Collapse
|
5
|
Karam M, Thenoz M, Capraro V, Robin JP, Pinatel C, Lancon A, Galia P, Sibon D, Thomas X, Ducastelle-Lepretre S, Nicolini F, El-Hamri M, Chelghoun Y, Wattel E, Mortreux F. Chromatin redistribution of the DEK oncoprotein represses hTERT transcription in leukemias. Neoplasia 2014; 16:21-30. [PMID: 24563617 PMCID: PMC3927101 DOI: 10.1593/neo.131658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
Abstract
Although numerous factors have been found to modulate hTERT transcription, the mechanism of its repression in certain leukemias remains unknown. We show here that DEK represses hTERT transcription through its enrichment on the hTERT promoter in cells from chronic and acute myeloid leukemias, chronic lymphocytic leukemia, but not acute lymphocytic leukemias where hTERT is overexpressed. We isolated DEK from the hTERT promoter incubated with nuclear extracts derived from fresh acute myelogenous leukemia (AML) cells and from cells expressing Tax, an hTERT repressor encoded by the human T cell leukemia virus type 1. In addition to the recruitment of DEK, the displacement of two potent known hTERT transactivators from the hTERT promoter characterized both AML cells and Tax-expressing cells. Reporter and chromatin immunoprecipitation assays permitted to map the region that supports the repressive effect of DEK on hTERT transcription, which was proportionate to the level of DEK-promoter association but not with the level of DEK expression. Besides hTERT repression, this context of chromatin redistribution of DEK was found to govern about 40% of overall transcriptional modifications, including those of cancer-prone genes. In conclusion, DEK emerges as an hTERT repressor shared by various leukemia subtypes and seems involved in the deregulation of numerous genes associated with leukemogenesis.
Collapse
Affiliation(s)
- Maroun Karam
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Morgan Thenoz
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Valérie Capraro
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Jean-Philippe Robin
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Christiane Pinatel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Agnès Lancon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Perrine Galia
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - David Sibon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Xavier Thomas
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Sophie Ducastelle-Lepretre
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Nicolini
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Mohamed El-Hamri
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Youcef Chelghoun
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Eric Wattel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Mortreux
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| |
Collapse
|
6
|
Tacheny A, Dieu M, Arnould T, Renard P. Mass spectrometry-based identification of proteins interacting with nucleic acids. J Proteomics 2013; 94:89-109. [PMID: 24060998 DOI: 10.1016/j.jprot.2013.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/19/2013] [Accepted: 09/13/2013] [Indexed: 01/02/2023]
Abstract
The identification of the regulatory proteins that control DNA transcription as well as RNA stability and translation represents a key step in the comprehension of gene expression regulation. Those proteins can be purified by DNA- or RNA-affinity chromatography, followed by identification by mass spectrometry. Although very simple in the concept, this represents a real technological challenge due to the low abundance of regulatory proteins compared to the highly abundant proteins binding to nucleic acids in a nonsequence-specific manner. Here we review the different strategies that have been set up to reach this purpose, discussing the key parameters that should be considered to increase the chances of success. Typically, two categories of biological questions can be distinguished: the identification of proteins that specifically interact with a precisely defined binding site, mostly addressed by quantitative mass spectrometry, and the identification in a non-comparative manner of the protein complexes recruited by a poorly characterized long regulatory region of nucleic acids. Finally, beside the numerous studies devoted to in vitro-assembled nucleic acid-protein complexes, the scarce data reported on proteomic analyses of in vivo-assembled complexes are described, with a special emphasis on the associated challenges.
Collapse
Affiliation(s)
- A Tacheny
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | |
Collapse
|
7
|
Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia. Mol Cell Biol 2012; 32:4595-610. [PMID: 22966206 DOI: 10.1128/mcb.00724-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the functions of hypoxia-inducible factor 1α (HIF1α)/aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF2α/ARNT (HIF2) proteins in activating hypoxia-inducible genes are well established, the role of other transcription factors in the hypoxic transcriptional response is less clear. We report here for the first time that the basic helix-loop-helix-leucine-zip transcription factor upstream stimulatory factor 2 (USF2) is required for the hypoxic transcriptional response, specifically, for hypoxic activation of HIF2 target genes. We show that inhibiting USF2 activity greatly reduces hypoxic induction of HIF2 target genes in cell lines that have USF2 activity, while inducing USF2 activity in cells lacking USF2 activity restores hypoxic induction of HIF2 target genes. Mechanistically, USF2 activates HIF2 target genes by binding to HIF2 target gene promoters, interacting with HIF2α protein, and recruiting coactivators CBP and p300 to form enhanceosome complexes that contain HIF2α, USF2, CBP, p300, and RNA polymerase II on HIF2 target gene promoters. Functionally, the effect of USF2 knockdown on proliferation, motility, and clonogenic survival of HIF2-dependent tumor cells in vitro is phenocopied by HIF2α knockdown, indicating that USF2 works with HIF2 to activate HIF2 target genes and to drive HIF2-depedent tumorigenesis.
Collapse
|
8
|
Jiang D, Jia Y, Jarrett HW. Transcription factor proteomics: identification by a novel gel mobility shift-three-dimensional electrophoresis method coupled with southwestern blot and high-performance liquid chromatography-electrospray-mass spectrometry analysis. J Chromatogr A 2011; 1218:7003-15. [PMID: 21880322 PMCID: PMC3174475 DOI: 10.1016/j.chroma.2011.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 11/15/2022]
Abstract
Transcription factor (TF) purification and identification is an important step in elucidating gene regulatory mechanisms. In this study, we present two new electrophoretic mobility shift assay (EMSA)-based multi-dimensional electrophoresis approaches to isolate and characterize TFs, using detection with either southwestern or western blotting and HPLC-nanoESI-MS/MS analysis for identification. These new techniques involve several major steps. First, EMSA is performed with agents that diminish non-specific DNA-binding and the DNA-protein complex is separated by native PAGE gel. The gel is then electrotransferred to PVDF membrane and visualized by autoradiography. Next, the DNA-protein complex, which has been transferred onto the blot, is extracted using a detergent-containing elution buffer. Following detergent removal, concentrated extract is separated by SDS-PAGE (EMSA-2DE), followed by in-gel trypsin digestion and HPLC-nanoESI-MS/MS analysis, or the concentrated extract is separated by two-dimensional gel electrophoresis (EMSA-3DE), followed by southwestern or western blot analysis to localize DNA binding proteins on blot which are further identified by on-blot trypsin digestion and HPLC-nanoESI-MS/MS analysis. Finally, the identified DNA binding proteins are further validated by EMSA-immunoblotting or EMSA antibody supershift assay. This approach is used to purify and identify GFP-C/EBP fusion protein from bacterial crude extract, as well as purifying AP1 and CEBP DNA binding proteins from a human embryonic kidney cell line (HEK293) nuclear extract. AP1 components, c-Jun, Jun-D, c-Fos, CREB, ATF1 and ATF2 were successfully identified from 1.5 mg of nuclear extract (equivalent to 3×10(7) HEK293 cells) with AP1 binding activity of 750 fmol. In conclusion, this new strategy of combining EMSA with additional dimensions of electrophoresis and using southwestern blotting for detection proves to be a valuable approach in the identification of transcriptional complexes by proteomic methods.
Collapse
Affiliation(s)
- Daifeng Jiang
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX 28249
| | - Yinshan Jia
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX 28249
| | - Harry W. Jarrett
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX 28249
| |
Collapse
|
9
|
Gladych M, Wojtyla A, Rubis B. Human telomerase expression regulation. Biochem Cell Biol 2011; 89:359-76. [DOI: 10.1139/o11-037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.
Collapse
Affiliation(s)
- Marta Gladych
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Aneta Wojtyla
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
10
|
Two-dimensional gel electrophoresis in proteomics: Past, present and future. J Proteomics 2010; 73:2064-77. [PMID: 20685252 DOI: 10.1016/j.jprot.2010.05.016] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 12/14/2022]
Abstract
Two-dimensional gel electrophoresis has been instrumental in the birth and developments of proteomics, although it is no longer the exclusive separation tool used in the field of proteomics. In this review, a historical perspective is made, starting from the days where two-dimensional gels were used and the word proteomics did not even exist. The events that have led to the birth of proteomics are also recalled, ending with a description of the now well-known limitations of two-dimensional gels in proteomics. However, the often-underestimated advantages of two-dimensional gels are also underlined, leading to a description of how and when to use two-dimensional gels for the best in a proteomics approach. Taking support of these advantages (robustness, resolution, and ability to separate entire, intact proteins), possible future applications of this technique in proteomics are also mentioned.
Collapse
|
11
|
BiotecVisions 2010, March-April. Biotechnol J 2010. [DOI: 10.1002/biot.201000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|