1
|
Meeks KR, Ji J, Protopopov MV, Tarkhanova OO, Moroz YS, Tanner JJ. Novel Fragment Inhibitors of PYCR1 from Docking-Guided X-ray Crystallography. J Chem Inf Model 2024; 64:1704-1718. [PMID: 38411104 PMCID: PMC11058006 DOI: 10.1021/acs.jcim.3c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1) is one of the most consistently upregulated enzymes across multiple cancer types and central to the metabolic rewiring of cancer cells. Herein, we describe a fragment-based, structure-first approach to the discovery of PYCR1 inhibitors. Thirty-seven fragment-like carboxylic acids in the molecular weight range of 143-289 Da were selected from docking and then screened using X-ray crystallography as the primary assay. Strong electron density was observed for eight compounds, corresponding to a crystallographic hit rate of 22%. The fragments are novel compared to existing proline analog inhibitors in that they block both the P5C substrate pocket and the NAD(P)H binding site. Four hits showed inhibition of PYCR1 in kinetic assays, and one has lower apparent IC50 than the current best proline analog inhibitor. These results show proof-of-concept for our inhibitor discovery approach and provide a basis for fragment-to-lead optimization.
Collapse
Affiliation(s)
- Kaylen R Meeks
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Olga O Tarkhanova
- Chemspace LLC, 85 Chervonotkatska Street, Suite 1, Kyïv 02094, Ukraine
| | - Yurii S Moroz
- Chemspace LLC, 85 Chervonotkatska Street, Suite 1, Kyïv 02094, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyïv, Kyïv 01601, Ukraine
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Rayan M, Sayed TS, Hussein OJ, Therachiyil L, Maayah ZH, Maccalli C, Uddin S, Prehn JHM, Korashy HM. Unlocking the secrets: exploring the influence of the aryl hydrocarbon receptor and microbiome on cancer development. Cell Mol Biol Lett 2024; 29:33. [PMID: 38448800 PMCID: PMC10918910 DOI: 10.1186/s11658-024-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Li Y, Pan B, Zhang F, Jia X, Zhu X, Tong X, Zhao J, Li C. TPI1 promotes MAPK/ERK-induced EMT, cell migration and invasion in lung adenocarcinoma. Thorac Cancer 2024; 15:327-338. [PMID: 38130074 PMCID: PMC10834191 DOI: 10.1111/1759-7714.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Triosephosphate isomerase 1 (TPI1), as a widely involved glycolytic enzyme, plays a significant role in glucose metabolism and is highly expressed in various tumors. However, its role in lung adenocarcinoma (LUAD) remains incompletely understood. METHODS Through bioinformatic analysis, we identified a positive association between high expression of TPI1 and metastasis in LUAD. Western blot, RT-qPCR, wound healing assays and transwell experiments, were employed to investigate potential mechanisms. RESULTS In this study, bioinformatic analysis showed that high expression of TPI1 was associated with poor prognosis in LUAD patients. We examined the expression of TPI1 in 29 paired LUAD tissues and found that TPI1 expression was higher in LUAD tissues than in paired adjacent noncancerous tissues. Meanwhile, overexpression of TPI1 promoted the epithelial-mesenchymal transition (EMT) process in LUAD cells, while silencing TPI1 weakened the EMT process. Furthermore, TPI1 was shown to regulate EMT through the MAPK/ERK signaling pathway. CONCLUSION TPI1 promotes LUAD metastasis by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bin Pan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Cardiothoracic SurgeryPeople's Hospital Affiliated to Jiangsu UniversityZhenjiangChina
| | | | - Xinyu Jia
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinyu Zhu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Tong
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chang Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
4
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Shotgun Proteomic-Based Approach with a Q-Exactive Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometer for Protein Adductomics on a 3D Human Brain Tumor Neurospheroid Culture Model: The Identification of Adduct Formation in Calmodulin-Dependent Protein Kinase-2 and Annexin-A1 Induced by Pesticide Mixture. J Proteome Res 2023; 22:3811-3832. [PMID: 37906427 PMCID: PMC10696604 DOI: 10.1021/acs.jproteome.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Pesticides are increasingly used in combinations in crop protection, resulting in enhanced toxicities for various organisms. Although protein adductomics is challenging, it remains a powerful bioanalytical tool to check environmental exposure and characterize xenobiotic adducts as putative toxicity biomarkers with high accuracy, facilitated by recent advances in proteomic methodologies and a mass spectrometry high-throughput technique. The present study aims to predict the potential neurotoxicity effect of imidacloprid and λ-cyhalothrin insecticides on human neural cells. Our protocol consisted first of 3D in vitro developing neurospheroids derived from human brain tumors and then treatment by pesticide mixture. Furthermore, we adopted a bottom-up proteomic-based approach using nanoflow ultraperformance liquid chromatography coupled with a high-resolution mass spectrometer for protein-adduct analysis with prediction of altered sites. Two proteins were selected, namely, calcium-calmodulin-dependent protein kinase-II (CaMK2) and annexin-A1 (ANXA1), as key targets endowed with primordial roles. De novo sequencing revealed several adduct formations in the active site of 82-ANXA1 and 228-CaMK2 as a result of neurotoxicity, predicted by the added mass shifts for the structure of electrophilic precursors. To the best of our knowledge, our study is the first to adopt a proteomic-based approach to investigate in depth pesticide molecular interactions and their potential to adduct proteins which play a crucial role in the neurotoxicity mechanism.
Collapse
Affiliation(s)
- Kaouthar Louati
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
| | - Rania Zribi
- Higher
Institute of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, Tunis 1005, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Fathi Safta
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Enríquez-Flores S, De la Mora-De la Mora I, García-Torres I, Flores-López LA, Martínez-Pérez Y, López-Velázquez G. Human Triosephosphate Isomerase Is a Potential Target in Cancer Due to Commonly Occurring Post-Translational Modifications. Molecules 2023; 28:6163. [PMID: 37630415 PMCID: PMC10459230 DOI: 10.3390/molecules28166163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer involves a series of diseases where cellular growth is not controlled. Cancer is a leading cause of death worldwide, and the burden of cancer incidence and mortality is rapidly growing, mainly in developing countries. Many drugs are currently used, from chemotherapeutic agents to immunotherapy, among others, along with organ transplantation. Treatments can cause severe side effects, including remission and progression of the disease with serious consequences. Increased glycolytic activity is characteristic of cancer cells. Triosephosphate isomerase is essential for net ATP production in the glycolytic pathway. Notably, some post-translational events have been described that occur in human triosephosphate isomerase in which functional and structural alterations are provoked. This is considered a window of opportunity, given the differences that may exist between cancer cells and their counterpart in normal cells concerning the glycolytic enzymes. Here, we provide elements that bring out the potential of triosephosphate isomerase, under post-translational modifications, to be considered an efficacious target for treating cancer.
Collapse
Affiliation(s)
- Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico City 14380, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| |
Collapse
|
6
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
The role of PYCR1 in inhibiting 5-fluorouracil-induced ferroptosis and apoptosis through SLC25A10 in colorectal cancer. Hum Cell 2022; 35:1900-1911. [DOI: 10.1007/s13577-022-00775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
|
8
|
Protein modifications throughout the lung cancer proteome unravel the cancer-specific regulation of glycolysis. Cell Rep 2021; 37:110137. [PMID: 34936872 DOI: 10.1016/j.celrep.2021.110137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 01/16/2023] Open
Abstract
Glycolytic reprogramming is a typical feature of cancer. However, the cancer-specific modulation of glycolytic enzymes requires systematic elucidation. Here, we report a range of dysregulated modifications in association with a family of enzymes specifically related to the glycolysis pathway by systematic identification of delta masses at the proteomic scale in human non-small-cell lung cancer. The most significant modification is the delta mass of 79.967 Da at serine 58 (Ser58) of triosephosphate isomerase (TPI), which is confirmed to be phosphorylation. Blocking TPI Ser58 phosphorylation dramatically inhibits glycolysis, cancer growth, and metastasis. The protein kinase PRKACA directly phosphorylates TPI Ser58, thereby enhancing TPI enzymatic activity and glycolysis. The upregulation of TPI Ser58 phosphorylation is detected in various human tumor specimens and correlates with poor survival. Therefore, our study identifies a number of cancer-specific protein modifications spanned on glycolytic enzymes and unravels the significance of TPI Ser58 phosphorylation in glycolysis and lung cancer development.
Collapse
|
9
|
Bogner AN, Stiers KM, Tanner JJ. Structure, biochemistry, and gene expression patterns of the proline biosynthetic enzyme pyrroline-5-carboxylate reductase (PYCR), an emerging cancer therapy target. Amino Acids 2021; 53:1817-1834. [PMID: 34003320 PMCID: PMC8599497 DOI: 10.1007/s00726-021-02999-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Proline metabolism features prominently in the unique metabolism of cancer cells. Proline biosynthetic genes are consistently upregulated in multiple cancers, while the proline catabolic enzyme proline dehydrogenase has dual, context-dependent pro-cancer and pro-apoptotic functions. Furthermore, the cycling of proline and Δ1-pyrroline-5-carboxylate through the proline cycle impacts cellular growth and death pathways by maintaining redox homeostasis between the cytosol and mitochondria. Here we focus on the last enzyme of proline biosynthesis, Δ1-pyrroline-5-carboxylate reductase, known as PYCR in humans. PYCR catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to proline and forms the reductive half of the proline metabolic cycle. We review the research on the three-dimensional structure, biochemistry, inhibition, and cancer biology of PYCR. To provide a global view of PYCR gene upregulation in cancer, we mined RNA transcript databases to analyze differential gene expression in 28 cancer types. This analysis revealed strong, widespread upregulation of PYCR genes, especially PYCR1. Altogether, the research over the past 20 years makes a compelling case for PYCR as a cancer therapy target. We conclude with a discussion of some of the major challenges for the field, including developing isoform-specific inhibitors, elucidating the function of the long C-terminus of PYCR1/2, and characterizing the interactome of PYCR.
Collapse
Affiliation(s)
- Alexandra N Bogner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Kyle M Stiers
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
10
|
Punicalagin in Cancer Prevention-Via Signaling Pathways Targeting. Nutrients 2021; 13:nu13082733. [PMID: 34444893 PMCID: PMC8400644 DOI: 10.3390/nu13082733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The extract of pomegranate (Punica granatum) has been applied in medicine since ancient times due to its broad-spectrum health-beneficial properties. It is a rich source of hydrolyzable tannins and anthocyanins, exhibiting strong antioxidative, anti-inflammatory, and antineoplastic properties. Anticancer activities of pomegranate with reference to modulated signaling pathways in various cancer diseases have been recently reviewed. However, less is known about punicalagin (Pug), a prevailing compound in pomegranate, seemingly responsible for its most beneficial properties. In this review, the newest data derived from recent scientific reports addressing Pug impact on neoplastic cells are summarized and discussed. Its attenuating effect on signaling circuits promoting cancer growth and invasion is depicted. The Pug-induced redirection of signal-transduction pathways from survival and proliferation into cell-cycle arrest, apoptosis, senescence, and autophagy (thus compromising neoplastic progression) is delineated. Considerations presented in this review are based mainly on data obtained from in vitro cell line models and concern the influence of Pug on human cervical, ovarian, breast, lung, thyroid, colorectal, central nervous system, bone, as well as other cancer types.
Collapse
|
11
|
Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer. Glycoconj J 2021; 38:213-231. [PMID: 33835347 DOI: 10.1007/s10719-021-09994-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a highly malignant tumor of the digestive tract that is difficult to diagnose and treat. It is more common in developed countries and has become one of the main causes of death in some countries and regions. Currently, pancreatic cancer generally has a poor prognosis, partly due to the lack of symptoms in the early stages of pancreatic cancer. Therefore, most cases are diagnosed at advanced stage. With the continuous in-depth research of glycoproteomics in precision medical diagnosis, there have been some reports on quantitative analysis of cancer-related cells, plasma or tissues to find specific biomarkers for targeted therapy. This research is based on the developed complete N-linked glycopeptide database search engine GPSeeker, combined with liquid-mass spectrometry and stable diethyl isotope labeling, providing a benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers. With spectrum-level FDR ≤1%, 20,038 intact N-Glycopeptides corresponding to 4518 peptide backbones, 228 N-glycan monosaccharide compositions 1026 N-glycan putative structures, 4460 N-glycosites and 3437 intact N-glycoproteins were identified. With the criteria of ≥1.5-fold change and p value<0.05, 52 differentially expressed intact N-glycopeptides (DEGPs) were found in pancreatic cancer tussues relative to control, where 38 up-regulated and 14 down-regulated, respectively.
Collapse
|
12
|
Li L, Wang Z, Lu T, Li Y, Pan M, Yu D, Hu G. Expression and Functional Relevance of ANXA1 in Hypopharyngeal Carcinoma with Lymph Node Metastasis. Onco Targets Ther 2021; 14:1387-1399. [PMID: 33658802 PMCID: PMC7920586 DOI: 10.2147/ott.s292287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this study is to investigate the expression and functional role of Annexin (ANXA1) in lymph node (LN) metastasis of hypopharyngeal carcinoma (HSCC). Methods Differentially expressed genes in tissue from HSCC with or without LN metastasis were obtained from a previous RNA sequencing experiment. The presence of LN metastasis is determined by pathological diagnosis after neck dissection. ANXA1 expression was detected by qRT-PCR and Western blotting. Immunohistochemistry was used to detect the expression of ANXA1 in 74 cases of HSCC and normal control tissues. We also evaluated the clinical significance of ANXA1 in HSCC. Differentially expressed genes related to ANXA1 were analyzed using bioinformatic tools, and potential mechanisms of action of ANXA1 were assessed using in vitro experiments. In these in vitro experiments, cell proliferation was detected by CCK8 staining, and colony formation, migration and invasion were assessed using Transwell assays, and apoptosis as well as cell cycle status were quantified by flow cytometry. Results ANXA1 was significantly downregulated in HSCC with LN metastasis. The survival rate of patients with low ANXA1 expression was significantly worse than that of patients with high ANXA1 expression (p<0.05). Silencing ANXA1 in cell culture experiments promoted the proliferation, migration and invasion of FaDu cells, inhibited apoptosis, and increased the proportion of cells in S phase. We furthermore found that the mRNA expression of ANXA1 was positively correlated with Yap1 expression (p<0.0001). Our in vitro experiments showed that ANXA1 regulates the expression of Yap1, and over-expression of Yap1 could reverse the effect of ANXA1 silencing on cancer cell progression. Conclusion Our findings suggest that ANXA1 is a putative LN metastasis suppressor gene in tumor, which may suppress the LN metastasis of HSCC by regulating the expression of Yap1.
Collapse
Affiliation(s)
- Lei Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhihai Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Lu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanshi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Pan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guohua Hu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Ganesan T, Sinniah A, Ibrahim ZA, Chik Z, Alshawsh MA. Annexin A1: A Bane or a Boon in Cancer? A Systematic Review. Molecules 2020; 25:molecules25163700. [PMID: 32823805 PMCID: PMC7465196 DOI: 10.3390/molecules25163700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023] Open
Abstract
Annexin A1 has been extensively investigated as an anti-inflammatory protein, but its role in different types of cancer has not been consolidated in a single systematic review to date. Thus, the aim of this paper is to systematically review and critically analyse 18 studies (in-vivo and in-vitro) to consolidate, in a concerted manner, all the information on differential expression of Annexin A1 in different types of cancer and the role this protein plays in tumorigenesis. Pubmed, Scopus, Web of Science, and ScienceDirect were used for the literature search and the keywords used are “annexin A1,” “lipocortin 1,” “cancer,” “malignancy,” “neoplasm,” “neoplasia,” and “tumor.” A total of 1128 articles were retrieved by implementing a standard search strategy subjected to meticulous screening processes and 442 articles were selected for full article screening. A total of 18 articles that adhered to the inclusion criteria were included in the systematic review and these articles possessed low to moderate bias. These studies showed a strong correlation between Annexin A1 expression and cancer progression via modulation of various cancer-associated pathways. Differential expression of Annexin A1 is shown to play a role in cellular proliferation, metastasis, lymphatic invasion, and development of resistance to anti-cancer treatment. Meta-analysis in the future may provide a statistically driven association between Annexin A1 expression and malignancy progression.
Collapse
|
14
|
Fu Z, Zhang S, Wang B, Huang W, Zheng L, Cheng A. Annexin A1: A double-edged sword as novel cancer biomarker. Clin Chim Acta 2020; 504:36-42. [DOI: 10.1016/j.cca.2020.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
15
|
Pekel G, Ari F. Therapeutic Targeting of Cancer Metabolism with Triosephosphate Isomerase. Chem Biodivers 2020; 17:e2000012. [PMID: 32180338 DOI: 10.1002/cbdv.202000012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
Abstract
The increase in glycolytic flux in cancer, known as aerobic glycolysis, is one of the most important hallmarks of cancer. Therefore, glycolytic enzymes have importance in understanding the molecular mechanism of cancer progression. Triosephosphate isomerase (TPI) is one of the key glycolytic enzymes. Furthermore, it takes a part in gluconeogenesis, pentose phosphate pathway and fatty acid biosynthesis. To date, it has been shown altered levels of TPI in various cancer types, especially in metastatic phenotype. According to other studies, TPI might be considered as a potential therapeutic target and a cancer-related biomarker in different types of cancer. However, its function in tumor formation and development has not been fully understood. Here, we reviewed the relationship between TPI and cancer for the first time.
Collapse
Affiliation(s)
- Gonca Pekel
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| | - Ferda Ari
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| |
Collapse
|
16
|
Sang S, Zhang C, Shan J. Pyrroline-5-Carboxylate Reductase 1 Accelerates the Migration and Invasion of Nonsmall Cell Lung Cancer In Vitro. Cancer Biother Radiopharm 2019; 34:380-387. [PMID: 30916574 DOI: 10.1089/cbr.2019.2782] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: Pyrroline-5-carboxylate reductase 1 (PYCR1) is involved in tumor progression, for instance, breast cancer and prostate cancer. However, its role in tumor metastasis, especially in nonsmall cell lung cancer (NSCLC), is still elusive. Materials and Methods: The messenger RNA (mRNA) expression of PYCR1 between NSCLC and normal lung specimens was compared using Oncomine database. The endogenous PYCR1 expressions in NSCLC cell lines 95C and H1299 were knocked down by lentiviral-mediated delivery of short hairpin RNA (shRNA). Then the effects of PYCR1 on the migration and invasion of NSCLC cells were studied by wound healing assay and transwell assay. Results: PYCR1 mRNA expression was significantly higher in NSCLC specimens than that in normal lung tissues. Depletion of PYCR1 in NSCLC cell significantly repressed the cell migration and invasion. Moreover, depletion of PYCR1 influenced the expression of epithelial-mesenchymal transition molecules E-cadherin, Vimentin, N-cadherin, and Snail1. Conclusions: Our data suggested that PYCR1 plays a positive role in NSCLC metastasis in vitro and might be a promising target for treating NSCLC.
Collapse
Affiliation(s)
- Senhua Sang
- 1College of Life Science and Technology, Guangxi University, Nanning, China
- 2Shanghai Linger Biotechnology Co., Ltd., Shanghai, China
| | - Cuicui Zhang
- 1College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jianwei Shan
- 1College of Life Science and Technology, Guangxi University, Nanning, China
- 3Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- 4Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| |
Collapse
|
17
|
Analysis of the Antiproliferative Effect of Ankaferd Hemostat on Caco-2 Colon Cancer Cells via LC/MS Shotgun Proteomics Approach. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5268031. [PMID: 31240215 PMCID: PMC6556321 DOI: 10.1155/2019/5268031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Ankaferd hemostat (ABS), a traditional herbal extract, is a hemostatic agent used for wound healing and bleeding treatment. A standardized form of plants contains many biomolecules. In recent years, previous studies have demonstrated the antineoplastic effect of ABS. In the present work, we focused on the mechanism of its antineoplastic effect over Caco-2 colon cancer cells. The LC/MS-based proteomics method was used to understand the effect of ABS at the protein level. The results were evaluated with gene ontology, protein interaction, and pathway analysis. As shown by our results, ABS altered glucose, fatty acids, and protein metabolism. Moreover, ABS affects the cell cycle machinery. Moreover, we found that ABS induced critical cancer target and suppressor proteins such as carboxyl-terminal hydrolase 1, 60S ribosomal protein L5, Tumor protein D52-like2, karyopherin alpha 2, and protein deglycase DJ-1. In conclusion, the proteomics results indicated that ABS affects various cancer targets and suppressor proteins. Moreover ABS has systematical effect on cell metabolism and cell cycle in Caco-2 cells, suggesting that it could be used as an antineoplastic agent.
Collapse
|
18
|
Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, Dalerba P, Wang TC, Han YW. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep 2019; 20:embr.201847638. [PMID: 30833345 DOI: 10.15252/embr.201847638] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022] Open
Abstract
Fusobacterium nucleatum, a Gram-negative oral anaerobe, is a significant contributor to colorectal cancer. Using an in vitro cancer progression model, we discover that F. nucleatum stimulates the growth of colorectal cancer cells without affecting the pre-cancerous adenoma cells. Annexin A1, a previously unrecognized modulator of Wnt/β-catenin signaling, is a key component through which F. nucleatum exerts its stimulatory effect. Annexin A1 is specifically expressed in proliferating colorectal cancer cells and involved in activation of Cyclin D1. Its expression level in colon cancer is a predictor of poor prognosis independent of cancer stage, grade, age, and sex. The FadA adhesin from F. nucleatum up-regulates Annexin A1 expression through E-cadherin. A positive feedback loop between FadA and Annexin A1 is identified in the cancerous cells, absent in the non-cancerous cells. We therefore propose a "two-hit" model in colorectal carcinogenesis, with somatic mutation(s) serving as the first hit, and F. nucleatum as the second hit exacerbating cancer progression after benign cells become cancerous. This model extends the "adenoma-carcinoma" model and identifies microbes such as F. nucleatum as cancer "facilitators".
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Jung Eun Baik
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - William J Raab
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Piero Dalerba
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yiping W Han
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY, USA .,Division of Digestive and Liver Diseases, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J, Fu XL. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy. J Cell Physiol 2018; 234:348-368. [PMID: 30069931 DOI: 10.1002/jcp.26917] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous group of diseases that are the result of abnormal glucose metabolism alterations with high lactate production by pyruvate to lactate conversion, which remodels acidosis and offers an evolutional advantage for tumor cells, even enhancing their aggressive phenotype. This review summarizes recent findings that involve multiple genes, molecules, and downstream signaling in the dysregulated glycolytic pathway, which can allow a tumor to initiate acid byproducts and to progress, thereby resulting in acidosis commonly found in the tumor microenvironment of CRC. Moreover, the relationship between CRC cells and the tumor acidic microenvironment, especially for regulating lactate production and lactate dehydrogenase A levels, is also discussed, as well as comprehensively defining different aspects of glycolytic pathways that affect cancer cell proliferation, invasion, and migration. Furthermore, this review concentrates on glucose metabolism-mediated transduction factors in CRC, which include acid-sensing ion channels, triosephosphate isomerase and key glycolysis-related enzymes that regulate glycolytic metabolites, coupled with the effect on tumor cell glycolysis as well as signaling pathways. In conclusion, glucose metabolism mediated by glycolytic pathways that are integral to tumor acidosis in CRC is demonstrated. Therefore, selective metabolic inhibitors or agents against these targets in glucose metabolism through glycolytic pathways may be clinically useful to regulate the tumor's acidic microenvironment for CRC treatment and to identify specific targets that regulate tumor acidosis through a cancer patient-personalized approach. Furthermore, strategies for modifying the metabolic processes that effectively inhibit cancer cell growth and tumor progression and activate potent anticancer effects may provide more effective antitumor prospects for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
21
|
Liu J, Xu C, Yang W, Shu Y, Zheng W, Zhou F. Multiple similarly effective solutions exist for biomedical feature selection and classification problems. Sci Rep 2017; 7:12830. [PMID: 28993656 PMCID: PMC5634418 DOI: 10.1038/s41598-017-13184-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Binary classification is a widely employed problem to facilitate the decisions on various biomedical big data questions, such as clinical drug trials between treated participants and controls, and genome-wide association studies (GWASs) between participants with or without a phenotype. A machine learning model is trained for this purpose by optimizing the power of discriminating samples from two groups. However, most of the classification algorithms tend to generate one locally optimal solution according to the input dataset and the mathematical presumptions of the dataset. Here we demonstrated from the aspects of both disease classification and feature selection that multiple different solutions may have similar classification performances. So the existing machine learning algorithms may have ignored a horde of fishes by catching only a good one. Since most of the existing machine learning algorithms generate a solution by optimizing a mathematical goal, it may be essential for understanding the biological mechanisms for the investigated classification question, by considering both the generated solution and the ignored ones.
Collapse
Affiliation(s)
- Jiamei Liu
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Cheng Xu
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Weifeng Yang
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Yayun Shu
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Weiwei Zheng
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- College of Software, Jilin University, Changchun, Jilin, 130012, China. .,College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
22
|
Chen T, Huang Z, Tian Y, Wang H, Ouyang P, Chen H, Wu L, Lin B, He R. Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol Rep 2017; 38:1822-1832. [PMID: 28737830 DOI: 10.3892/or.2017.5846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Triosephosphate isomerase (TPI) is highly expressed in many types of human tumors and is involved in migration and invasion of cancer cells. However, TPI clinicopathological significance and malignant function in gastric cancer (GC) have not been well defined. The present study aimed to examine TPI expression in GC tissue and its biological functions. Furthermore, we investigated its downstream genes by gene chip technology. Our results showed that TPI expression was higher in gastric cancer tissues than adjacent tissues, although no statistical differences were found between TPI expression and clinicopathological factors. TPI overexpression in human gastric carcinoma cell line BGC-823 enhanced cell proliferation, invasion and migration, but did not change cell cycle distribution, while TPI knockdown suppressed proliferation, invasion and migration, induced apoptosis and increased G2/M arrest of human gastric carcinoma cell line MGC-803. Since the cell division cycle associated 5 (CDCA5) was identified as the one with the most decreased expression after TPI knockdown, we investigated its role in MGC-803 cells. The results showed that CDCA5 knockdown also inhibited proliferation, migration, induced apoptosis and increased G2/M arrest similarly to TPI knockdown. CDCA5 overexpression promoted MGC-803 cell proliferation, clone formation and migration abilities. These results indicated that TPI expression level might affect GC cell behavior, suggesting that both TPI and CDCA5 might be considered as potential tumor markers related with GC development and might be potential new targets in GC treatment.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Yunxiao Tian
- Department of Pathology, Handan Central Hospital, Handan, Hebei, P.R. China
| | - Haiwei Wang
- Department of Pathology, Handan Central Hospital, Handan, Hebei, P.R. China
| | - Ping Ouyang
- Scientific Research Centre, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Haoqin Chen
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Dongguan, Guangdong, P.R. China
| | - Lili Wu
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Dongguan, Guangdong, P.R. China
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| |
Collapse
|
23
|
Chen T, Huang Z, Tian Y, Lin B, He R, Wang H, Ouyang P, Chen H, Wu L. Clinical significance and prognostic value of Triosephosphate isomerase expression in gastric cancer. Medicine (Baltimore) 2017; 96:e6865. [PMID: 28489783 PMCID: PMC5428617 DOI: 10.1097/md.0000000000006865] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triosephosphate isomerase (TPI) is highly expressed in many human cancers and is involved in migration and invasion of cancer cells. However, TPI clinicopathological significance and prognostic value in gastric cancer (GC) are not yet well defined. The aim of the present work was to evaluate TPI expression in GC tissue and its prognostic value in GC patients.TPI expression was analyzed in 92 primary GC tissues and 80 adjacent normal mucosa tissues from GC patients undergoing gastrectomy by immunohistochemical analysis of tissue microarrays (TMAs). Univariate and multivariate analyses were performed to investigate TPI prognostic significance in GC patients.Immunohistochemical staining score showed that TPI expression in cancer tissues was significantly higher than in adjacent normal mucosa (P < .001). Univariate analysis revealed that TPI expression, depth of invasion, lympho node metastasis, tumor node metastasis (TNM) stage, and tumor diameter were associated with negative prognostic predictors for overall survival in GC patients (P < .05). High TPI expression represented a significant predictor of shorter survival in GC patients with positive lymphatic metastasis (P = .022) and tumor diameter >5 cm (P = .018). Cox multivariate analysis identified TPI expression, TNM stage, and tumor diameter as independent prognostic factors in GC patients.TPI expression might be considered as a novel prognostic factor to evaluate GC patients' survival.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
| | - Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
- Dongguan Key Laboratory of Environmental Medicine, Guangdong
| | - Yunxiao Tian
- Department of Pathology, Handan Central Hospital, Hebei
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Guangdong
| | - Haiwei Wang
- Department of Pathology, Handan Central Hospital, Hebei
| | - Ping Ouyang
- Scientific Research Centre, Guangdong Medical University, Guangdong
| | - Haoqin Chen
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Guangdong, China
| | - Lili Wu
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Guangdong, China
| |
Collapse
|
24
|
Ranade D, Koul S, Thompson J, Prasad KB, Sengupta K. Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma 2017; 126:223-244. [PMID: 26921073 PMCID: PMC5371638 DOI: 10.1007/s00412-016-0580-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
Chromosome territories assume non-random positions in the interphase nucleus with gene-rich chromosomes localized toward the nuclear interior and gene-poor chromosome territories toward the nuclear periphery. Lamins are intermediate filament proteins of the inner nuclear membrane required for the maintenance of nuclear structure and function. Here, we show using whole-genome expression profiling that Lamin A/C or Lamin B2 depletion in an otherwise diploid colorectal cancer cell line (DLD1) deregulates transcript levels from specific chromosomes. Further, three-dimensional fluorescence in situ hybridization (3D-FISH) analyses of a subset of these transcriptionally deregulated chromosome territories revealed that the diploid chromosome territories in Lamin-depleted cells largely maintain conserved positions in the interphase nucleus in a gene-density-dependent manner. In addition, chromosomal aneuploidies were induced in ~25 % of Lamin A/C or Lamin B2-depleted cells. Sub-populations of these aneuploid cells consistently showed a mislocalization of the gene-rich aneuploid chromosome 19 territory toward the nuclear periphery, while gene-poor aneuploid chromosome 18 territory was mislocalized toward the nuclear interior predominantly upon Lamin B2 than Lamin A/C depletion. In addition, a candidate gene locus ZNF570 (Chr.19q13.12) significantly overexpressed upon Lamin B2 depletion was remarkably repositioned away from the nuclear lamina. Taken together, our studies strongly implicate an overarching role for Lamin B2 in the maintenance of nuclear architecture since loss of Lamin B2 relieves the spatial positional constraints required for maintaining conserved localization of aneuploid chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Devika Ranade
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Shivsmriti Koul
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Joyce Thompson
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kumar Brajesh Prasad
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
25
|
Vert A, Castro J, Ribó M, Benito A, Vilanova M. A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells. Oncotarget 2017; 7:18309-24. [PMID: 26918450 PMCID: PMC4951290 DOI: 10.18632/oncotarget.7579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
Ribonucleases represent a new class of antitumor RNA-damaging drugs. However, many wild-type members of the vertebrate secreted ribonuclease family are not cytotoxic because they are not able to evade the cytosolic ribonuclease inhibitor. We previously engineered the human pancreatic ribonuclease to direct it to the cell nucleus where the inhibitor is not present. The best characterized variant is PE5 that kills cancer cells through apoptosis mediated by the p21WAF1/CIP1 induction and the inactivation of JNK. Here, we have used microarray-derived transcriptional profiling to identify PE5 regulated genes on the NCI/ADR-RES ovarian cancer cell line. RT-qPCR analyses have confirmed the expression microarray findings. The results show that PE5 cause pleiotropic effects. Among them, it is remarkable the down-regulation of multiple genes that code for enzymes involved in deregulated metabolic pathways in cancer cells.
Collapse
Affiliation(s)
- Anna Vert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| |
Collapse
|
26
|
Jevtić P, Edens LJ, Li X, Nguyen T, Chen P, Levy DL. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem 2015; 290:27557-71. [PMID: 26429910 DOI: 10.1074/jbc.m115.673798] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/17/2022] Open
Abstract
A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change.
Collapse
Affiliation(s)
- Predrag Jevtić
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Lisa J Edens
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Xiaoyang Li
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Thang Nguyen
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Pan Chen
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Daniel L Levy
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
27
|
Wiśniewski JR, Duś-Szachniewicz K, Ostasiewicz P, Ziółkowski P, Rakus D, Mann M. Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters. J Proteome Res 2015; 14:4005-18. [PMID: 26245529 DOI: 10.1021/acs.jproteome.5b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is a leading cause of cancer-related death. It develops from normal enterocytes, through a benign adenoma stage, into the cancer and finally into the metastatic form. We previously compared the proteomes of normal colorectal enterocytes, cancer and nodal metastasis to a depth of 8100 proteins and found extensive quantitative remodeling between normal and cancer tissues but not cancer and metastasis (Wiśniewski et al. PMID 22968445). Here we utilize advances in the proteomic workflow to perform an in depth analysis of the normal tissue (N), the adenoma (A), and the cancer (C). Absolute proteomics of 10 000 proteins per patient from microdissected formalin-fixed and paraffin-embedded clinical material established a quantitative protein repository of the disease. Between N and A, 23% of all proteins changed significantly, 17.8% from A to C and 21.6% from N to C. Together with principal component analysis of the patient groups, this suggests that N, A, and C are equidistant but not on one developmental line. Our proteomics approach allowed us to assess changes in varied cell size, the composition of different subcellular components, and alterations in basic biological processes including the energy metabolism, plasma membrane transport, DNA replication, and transcription. This revealed several-fold higher concentrations of enzymes in fatty acid metabolism in C compared with N, and unexpectedly, the same held true of plasma membrane transporters.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Kamila Duś-Szachniewicz
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany.,Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Paweł Ostasiewicz
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , 50-205 Wrocław, Poland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
28
|
Corfield AP. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta Gen Subj 2015; 1850:236-52. [DOI: 10.1016/j.bbagen.2014.05.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/05/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
|
29
|
He YJ, Li WL, Liu BH, Dong H, Mou ZR, Wu YZ. Identification of differential proteins in colorectal cancer cells treated with caffeic acid phenethyl ester. World J Gastroenterol 2014; 20:11840-11849. [PMID: 25206290 PMCID: PMC4155376 DOI: 10.3748/wjg.v20.i33.11840] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/18/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanisms of the anti-cancer activity of caffeic acid phenethyl ester (CAPE).
METHODS: Protein profiles of human colorectal cancer SW480 cells treated with or without CAPE were analysed using a two-dimensional (2D) electrophoresis gel-based proteomics approach. After electrophoresis, the gels were stained with Coomassie brilliant blue R-250. Digital images were taken with a GS-800 Calibrated Densitometer, and image analysis was performed using PDQuest 2-D Analysis software. The altered proteins following CAPE treatment were further identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry following a database search. The identified proteins were validated by Western blot and immunofluorescence assay.
RESULTS: CAPE induced human colorectal cancer cell apoptosis. Four up-regulated proteins and seven down-regulated proteins in colorectal cancer cells treated with CAPE were found. The identified down-regulated proteins in CAPE-treated colorectal cancer cells were Triosephosphate Isomerase (Tim), Proteasome subunit alpha 4 (PSMA4) protein, Guanine nucleotide binding protein beta, Phosphoserine aminotransferase 1 (PSAT1), PSMA1, Myosin XVIIIB and Tryptophanyl-tRNA synthetase. Notably, CAPE treatment led to the down-regulation of PSAT1 and PSMA1, two proteins that have been implicated in tumorigenesis. The identified up-regulated proteins were Annexin A4, glyceraldehyde-3-phosphate dehydrogenase, Glucosamine-6-phosphate deaminase 1 (GNPDA1), and Glutathione peroxidase (GPX-1). Based on high match scores and potential role in cell growth control, PSMA1, PSAT1, GNPDA1 and GPX-1 were further validated by Western blotting and immunofluorescence assay. PSMA1 and PSAT1 were down-regulated, while GNPDA1 and GPX-1 were up-regulated in CAPE-treated colorectal cancer cells.
CONCLUSION: These differentiated proteins in colorectal cancer cells following CAPE treatment, may be potential molecular targets of CAPE and involved in the anti-cancer effect of CAPE.
Collapse
|
30
|
Luo Y, Wang L, Wang J. Developing proteomics-based biomarkers for colorectal neoplasms for clinical practice: opportunities and challenges. Proteomics Clin Appl 2014; 7:30-41. [PMID: 23255431 DOI: 10.1002/prca.201200071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/30/2012] [Accepted: 11/20/2012] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) arises from the normal colon epithelium through the accumulation of genetic mutations and epigenetic alterations that are associated with progression along the histological adenoma-adenocarcinoma sequence. Elucidating the molecular alterations underlying disease progression will not only provide insight into the behavior of the tumors, but also could lead to the discovery of useful biomarkers for diagnosis, monitoring treatment responsiveness, or predicting disease outcomes. In the past a few years, there have been several evaluating differentially expressed protein biomarkers by employing proteomics technologies coupled with mass spectrometry. In the current review, we will briefly summarize the results from selected recent studies using tissue or serum samples from CRC patients in the past 5 years and discuss the opportunities and challenges in translating these findings from the research setting to clinical practice.
Collapse
Affiliation(s)
- Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | | | | |
Collapse
|
31
|
Zhang ZQ, Li XJ, Liu GT, Xia Y, Zhang XY, Wen H. Identification of Annexin A1 protein expression in human gastric adenocarcinoma using proteomics and tissue microarray. World J Gastroenterol 2013; 19:7795-7803. [PMID: 24282368 PMCID: PMC3837281 DOI: 10.3748/wjg.v19.i43.7795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the differential expression of Annexin A1 (ANXA1) protein in human gastric adenocarcinoma. This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parameters of gastric carcinoma.
METHODS: Purified gastric adenocarcinoma cells (GAC) and normal gastric epithelial cells (NGEC) were obtained from 15 patients with gastric cancer by laser capture microdissection. All of the peptide specimens were labeled as 18O/16O after trypsin digestion. Differential protein expressions were quantitatively identified between GAC and NGEC by nanoliter-reverse-phase liquid chromatography-mass/mass spectrometry (nano-RPLC-MS/MS). The expressions of ANXA1 in GAC and NGEC were verified by western blot analysis. The tissue microarray containing the expressed ANXA1 in 75 pairs of gastric carcinoma and paracarcinoma specimens was detected by immunohistochemistry (IHC). The relationship between ANXA1 expression and clinicopathological parametes of gastric carcinoma was analyzed.
RESULTS: A total of 78 differential proteins were identified. Western blotting revealed that ANXA1 expression was significantly upregulated in GAC (2.17/1, P < 0.01). IHC results showed the correlations between ANXA1 protein expression and the clinicopathological parameters, including invasive depth (T stage), lymph node metastasis (N stage), distant metastasis (M stage) and tumour-lymph node metastasis stage (P < 0.01). However, the correlations between ANXA1 protein expression and the remaining clinicopathological parameters, including sex, age, histological differentiation and the size of tumour were not found (P > 0.05).
CONCLUSION: The upregulated ANXA1 expression may be associated with carcinogenesis, progression, invasion and metastasis of GAC. This protein could be considered as a biomarker of clinical prognostic prediction and targeted therapy of GAC.
Collapse
|
32
|
Cai J, Chen S, Zhang W, Wei Y, Lu J, Xing J, Dong Y. Proteomic analysis of differentially expressed proteins in 5-fluorouracil-treated human breast cancer MCF-7 cells. Clin Transl Oncol 2013; 16:650-9. [PMID: 24217974 DOI: 10.1007/s12094-013-1127-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND 5-Fluorouracil (5-Fu) is a commonly used chemotherapeutic agent in clinical care of breast cancer patients. However, the mechanism of how the 5-Fu works is complex and still largely unknown. OBJECTIVE The objective of this study was to understand the mechanism further and explore the new targets of 5-Fu. METHODS The differentially expressed proteins induced by 5-Fu in human breast cancer MCF-7 cells were identified by proteomic analysis. Four differentially expressed proteins were validated using Western blot and quantitative real-time reverse-transcription polymerase chain reaction analysis for protein and mRNA levels. The effect of 5-Fu on MCF-7 cells was determined by cell viability assay, transmission electron microscopy and flow cytometry analysis. RESULTS 5-Fu dose-dependently inhibited cell proliferation with the IC50 value of 98.2 μM. 5-Fu also induced obviously morphological change and apoptosis in MCF-7 cells. Twelve differentially expressed proteins involved in energy metabolism, cytoskeleton, cellular signal transduction and tumor invasion and metastasis were identified. CONCLUSION These results may provide a new insight into the molecular mechanism of 5-Fu in therapy of breast cancer.
Collapse
Affiliation(s)
- J Cai
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The annexins are a well-known, closely related, multigene superfamily of Ca2+-regulated, phospholipid-dependent, membrane-binding proteins. As a member of the annexins, Anxa1 participates in a variety of important biological processes, such as cellular transduction, membrane aggregation, inflammation, phagocytosis, proliferation, differentiation and apoptosis. Accumulated evidence has indicated that Anxa1 deregulations are associated with the development, invasion, metastasis, occurrence and drug resistance of cancers. The research evidence in recent years indicates that Anxa1 might specifically function either as a tumor suppressor or a tumor promoter candidate for certain cancers depending on the particular type of tumor cells/tissues. This article summarizes the associations between Anxa1 and malignant tumors, as well as potential action mechanisms. Anxa1 has the potential to be used in the future as a biomarker for the diagnosis, treatment and prognosis of certain tumors.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
34
|
Bellwied P, Staubach S, Hanisch FG. Chemical in-gel deglycosylation ofO-glycoproteins improves their staining and mass spectrometric identification. Electrophoresis 2013; 34:2387-93. [DOI: 10.1002/elps.201200647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/21/2012] [Accepted: 01/25/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Petra Bellwied
- Medical Faculty, Institute of Biochemistry II; University of Cologne; Köln; Germany
| | - Simon Staubach
- Medical Faculty, Institute of Biochemistry II; University of Cologne; Köln; Germany
| | | |
Collapse
|
35
|
Wang Y, Kuramitsu Y, Ueno T, Suzuki N, Yoshino S, Iizuka N, Zhang X, Akada J, Oka M, Nakamura K. Proteomic differential display identifies upregulated vinculin as a possible biomarker of pancreatic cancer. Oncol Rep 2012; 28:1845-50. [PMID: 22940724 DOI: 10.3892/or.2012.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/02/2012] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (PC) is characterized by rapid tumor spread, and very few patients with PC survive for more than 5 years. It is imperative to discover additional diagnostic biomarkers or specific therapeutic targets in order to improve the treatment of patients with PC. In search for useful biomarkers, we analyzed ten pairs of non-cancerous and cancer tissues from patients with PC by two-dimensional gel electrophoresis (2-DE). Nineteen protein spots showed differential expression on 2-DE gels between the cancer and non-cancerous tissues. Six upregulated protein spots were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as calreticulin, glutathione synthetase, stathmin, vinculin, α-enolase and glyceraldehyde-3-phosphate dehydrogenase. Western blotting demonstrated that vinculin was predominantly expressed in the pancreatic cancer tissues compared with to non-cancerous tissues. Our findings indicate that vinculin may be a clinically useful biomarker of PC.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
37
|
|
38
|
Staubach S, Hanisch FG. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 2011; 8:263-77. [PMID: 21501018 DOI: 10.1586/epr.11.2] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid rafts are defined as microdomains within the lipid bilayer of cellular membranes that assemble subsets of transmembrane or glycosylphosphatidylinisotol-anchored proteins and lipids (cholesterol and sphingolipids) and experimentally resist extraction in cold detergent (detergent-resistant membrane). These highly dynamic raft domains are essential in signaling processes and also form sorting platforms for targeted protein traffic. Lipid rafts are involved in protein endocytosis that occurs via caveolae or flotillin-dependent pathways. Non-constitutive protein components of rafts fluctuate dramatically in cancer with impacts on cell proliferation, signaling, protein trafficking, adhesion and apoptosis. This article focuses on the identification of candidate cancer-associated biomarkers in carcinoma cells using state-of-the-art proteomics.
Collapse
Affiliation(s)
- Simon Staubach
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | | |
Collapse
|
39
|
Zhang XN, Zhang XY, Cao XH. Advances in understanding the relationship between annexin A1 and gastrointestinal cancer. Shijie Huaren Xiaohua Zazhi 2011; 19:2160-2165. [DOI: 10.11569/wcjd.v19.i20.2160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Annexin A1 is a member of the annexin family of calcium-dependent phospholipid-binding proteins and participates in many important life processes, such as cellular signal transduction, proliferation, differentiation and apoptosis. Recent studies have shown that the expression levels of annexin A1 vary among different tumor tissues and different tumor subtypes and may be associated with the development, invasion and metastasis of malignant tumors. Understanding the relationship between annexin A1 and tumors has important implications for the early diagnosis and treatment of tumors.
Collapse
|
40
|
Diz AP, Carvajal-Rodríguez A, Skibinski DOF. Multiple hypothesis testing in proteomics: a strategy for experimental work. Mol Cell Proteomics 2011; 10:M110.004374. [PMID: 21364085 DOI: 10.1074/mcp.m110.004374] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In quantitative proteomics work, the differences in expression of many separate proteins are routinely examined to test for significant differences between treatments. This leads to the multiple hypothesis testing problem: when many separate tests are performed many will be significant by chance and be false positive results. Statistical methods such as the false discovery rate method that deal with this problem have been disseminated for more than one decade. However a survey of proteomics journals shows that such tests are not widely implemented in one commonly used technique, quantitative proteomics using two-dimensional electrophoresis. We outline a selection of multiple hypothesis testing methods, including some that are well known and some lesser known, and present a simple strategy for their use by the experimental scientist in quantitative proteomics work generally. The strategy focuses on the desirability of simultaneous use of several different methods, the choice and emphasis dependent on research priorities and the results in hand. This approach is demonstrated using case scenarios with experimental and simulated model data.
Collapse
Affiliation(s)
- Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310, Vigo, Spain.
| | | | | |
Collapse
|
41
|
Belt EJT, Fijneman RJA, van den Berg EG, Bril H, Delis-van Diemen PM, Tijssen M, van Essen HF, de Lange-de Klerk ESM, Beliën JAM, Stockmann HBAC, Meijer S, Meijer GA. Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence. Eur J Cancer 2011; 47:1837-45. [PMID: 21621406 DOI: 10.1016/j.ejca.2011.04.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/31/2011] [Accepted: 04/19/2011] [Indexed: 01/10/2023]
Abstract
AIM OF THE STUDY Loss of the nuclear lamina protein lamin A/C (LMNA) has been observed in several human malignancies. The present study aimed to investigate associations between LMNA expression and clinical outcome in colon cancer patients. PATIENTS AND METHODS Clinicopathological data and formalin-fixed paraffin embedded tissues were collected from 370 stage II and III colon cancer patients. Tissue microarrays were constructed, stained for lamin A/C and evaluated microscopically. Microsatellite instability status was determined for 318 tumours. RESULTS Low levels of LMNA expression were observed in 17.8% of colon tumours, with disease recurrence occurring in 45.5% of stage II and III colon cancer patients with LMNA-low expressing tumours compared to 29.6% of patients with LMNA-high expressing tumours (p=0.01). For stage II patients, disease recurrence was observed for 35.7% of LMNA-low compared to 20.3% of LMNA-high expressing tumours (p=0.03). Microsatellite stable (MSS) tumours exhibited more frequently low LMNA expression than microsatellite instable (MSI) tumours (21% versus 9.8%; p=0.05). Interestingly, disease recurrence among LMNA-low and LMNA-high expressing MSS tumours varied significantly for stage III patients who had not received adjuvant chemotherapy (100% versus 37.8%; p<0.01) while no such difference was observed for patients who received adjuvant chemotherapy (46.7% versus 46.0%; p=0.96). CONCLUSION These data indicate that low expression of LMNA is associated with an increased disease recurrence in stage II and III colon cancer patients, and suggest that these patients in particular may benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- E J Th Belt
- Department of Surgery, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Masson O, Bach AS, Derocq D, Prébois C, Laurent-Matha V, Pattingre S, Liaudet-Coopman E. Pathophysiological functions of cathepsin D: Targeting its catalytic activity versus its protein binding activity? Biochimie 2010; 92:1635-43. [DOI: 10.1016/j.biochi.2010.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/14/2010] [Indexed: 11/27/2022]
|
43
|
Mass spectrometry-based proteomics in biomedical research: emerging technologies and future strategies. Expert Rev Mol Med 2010; 12:e30. [DOI: 10.1017/s1462399410001614] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, the technology and methods widely available for mass spectrometry (MS)-based proteomics have increased in power and potential, allowing the study of protein-level processes occurring in biological systems. Although these methods remain an active area of research, established techniques are already helping answer biological questions. Here, this recent evolution of MS-based proteomics and its applications are reviewed, including standard methods for protein and peptide separation, biochemical fractionation, quantitation, targeted MS approaches such as selected reaction monitoring, data analysis and bioinformatics. Recent research in many of these areas reveals that proteomics has moved beyond simply cataloguing proteins in biological systems and is finally living up to its initial potential – as an essential tool to aid related disciplines, notably health research. From here, there is great potential for MS-based proteomics to move beyond basic research, into clinical research and diagnostics.
Collapse
|
44
|
Proteomics of colorectal cancer: Overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics 2010; 73:1873-95. [DOI: 10.1016/j.jprot.2010.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/02/2010] [Accepted: 06/15/2010] [Indexed: 02/09/2023]
|