1
|
Wang G, Yin H, Zhao T, Yang D, Jia S, Qiao C. De novo transcriptome assembly of Aureobasidium melanogenum CGMCC18996 to analyze the β-poly(L-malic acid) biosynthesis pathway under the CaCO3 addition. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Abstract
Peroxisomes in fungi are involved in a huge number of different metabolic processes. In addition, non-metabolic functions have also been identified. The proteins that are present in a particular peroxisome determine its metabolic function, whether they are the matrix localized enzymes of the different metabolic pathways or the membrane proteins involved in transport of metabolites across the peroxisomal membrane. Other peroxisomal proteins play a role in organelle biogenesis and dynamics, such as fission, transport and inheritance. Hence, obtaining a complete overview of which proteins are present in peroxisomes at a given time or under a given growth condition provides invaluable insights into peroxisome biology. Bottom up approaches are ideal to follow one or a few proteins at a time but they are not able to give a global view of the content of peroxisomes. To gain such information, top down approaches are required and one that has provided valuable insights into peroxisome function is mass spectrometry based organellar proteomics. Here, we discuss the findings of several such studies in yeast and filamentous fungi and outline new insights into peroxisomal function that were gained from these studies.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
3
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Freitag J, Stehlik T, Stiebler AC, Bölker M. The Obvious and the Hidden: Prediction and Function of Fungal Peroxisomal Matrix Proteins. Subcell Biochem 2018; 89:139-155. [PMID: 30378022 DOI: 10.1007/978-981-13-2233-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal peroxisomes are characterized by a number of specific biological functions. To understand the physiology and biochemistry of these organelles knowledge of the proteome content is crucial. Here, we address different strategies to predict peroxisomal proteins by bioinformatics approaches. These tools range from simple text searches to network based learning strategies. A complication of this analysis is the existence of cryptic peroxisomal proteins, which are overlooked in conventional bioinformatics queries. These include proteins where targeting information results from transcriptional and posttranscriptional alterations. But also proteins with low efficiency targeting motifs that are predominantly localized in the cytosol, and proteins lacking any canonical targeting information, can play important roles within peroxisomes. Many of these proteins are so far unpredictable. Detection and characterization of these cryptic peroxisomal proteins revealed the presence of novel peroxisomal enzymatic reaction networks in fungi.
Collapse
Affiliation(s)
- Johannes Freitag
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Alina C Stiebler
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
|
6
|
Healy RA, Kumar TA, Hewitt DA, McLaughlin DJ. Functional and phylogenetic implications of septal pore ultrastructure in the ascoma of Neolecta vitellina. Mycologia 2017; 105:802-13. [DOI: 10.3852/12-347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rosanne A. Healy
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108
| | - T.K. Arun Kumar
- The Zamorin’s Guruvayurappan College, Calicut, Kerala 673014, India
| | - David A. Hewitt
- Department of Botany, Academy of Natural Sciences, Philadelphia, Pennsylvania 19103
| | - David J. McLaughlin
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108
| |
Collapse
|
7
|
Abstract
UNLABELLED Pores in fungal septa enable cytoplasmic streaming between hyphae and their compartments. Consequently, the mycelium can be considered unicellular. However, we show here that Woronin bodies close ~50% of the three most apical septa of growing hyphae of Aspergillus niger. The incidence of closure of the 9th and 10th septa was even ≥94%. Intercompartmental streaming of photoactivatable green fluorescent protein (PA-GFP) was not observed when the septa were closed, but open septa acted as a barrier, reducing the mobility rate of PA-GFP ~500 times. This mobility rate decreased with increasing septal age and under stress conditions, likely reflecting a regulatory mechanism affecting septal pore diameter. Modeling revealed that such regulation offers effective control of compound concentration between compartments. Modeling also showed that the incidence of septal closure in A. niger had an even stronger impact on cytoplasmic continuity. Cytoplasm of hyphal compartments was shown not to be in physical contact when separated by more than 4 septa. Together, data show that apical compartments of growing hyphae behave unicellularly, while older compartments have a multicellular organization. IMPORTANCE The hyphae of higher fungi are compartmentalized by porous septa that enable cytosolic streaming. Therefore, it is believed that the mycelium shares cytoplasm. However, it is shown here that the septa of Aspergillus niger are always closed in the oldest part of the hyphae, and therefore, these compartments are physically isolated from each other. In contrast, only part of the septa is closed in the youngest part of the hyphae. Still, compartments in this hyphal part are physically isolated when separated by more than 4 septa. Even open septa act as a barrier for cytoplasmic mixing. The mobility rate through such septa reduces with increasing septal age and under stress conditions. Modeling shows that the septal pore width is set such that its regulation offers maximal control of compound concentration levels within the compartments. Together, we show for the first time that Aspergillus hyphae switch from a unicellular to multicellular organization.
Collapse
|
8
|
Schuldiner M, Zalckvar E. Peroxisystem: Harnessing systems cell biology to study peroxisomes. Biol Cell 2015; 107:89-97. [DOI: 10.1111/boc.201400091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Maya Schuldiner
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Einat Zalckvar
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
9
|
Stehlik T, Sandrock B, Ast J, Freitag J. Fungal peroxisomes as biosynthetic organelles. Curr Opin Microbiol 2014; 22:8-14. [PMID: 25305532 DOI: 10.1016/j.mib.2014.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Peroxisomes are nearly ubiquitous single-membrane organelles harboring multiple metabolic pathways beside their prominent role in the β-oxidation of fatty acids. Here we review the diverse metabolic functions of peroxisomes in fungi. A variety of fungal metabolites are at least partially synthesized inside peroxisomes. These include the essential co-factor biotin but also different types of secondary metabolites. Peroxisomal metabolites are often derived from acyl-CoA esters for example β-oxidation intermediates. In several ascomycetes a subtype of peroxisomes has been identified that is metabolically inactive but is required to plug the septal pores of wounded hyphae. Thus, peroxisomes are versatile organelles that can adapt their function to the life style of an organism. This remarkable variability suggests that the full extent of the biosynthetic capacity of peroxisomes is still elusive. Moreover, in fungi peroxisomes are non-essential under laboratory conditions making them attractive organelles for biotechnological approaches and the design of novel metabolic pathways in customized peroxisomes.
Collapse
Affiliation(s)
- Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein Str., Marburg, Germany
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Julia Ast
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany; Senckenberg Gesellschaft für Naturforschung, LOEWE Cluster for Integrative Fungal Research, Georg-Voigt-Str. 14-16, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Ast J, Stiebler AC, Freitag J, Bölker M. Dual targeting of peroxisomal proteins. Front Physiol 2013; 4:297. [PMID: 24151469 PMCID: PMC3798809 DOI: 10.3389/fphys.2013.00297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/28/2013] [Indexed: 01/08/2023] Open
Abstract
Cellular compartmentalization into organelles serves to separate biological processes within the environment of a single cell. While some metabolic reactions are specific to a single organelle, others occur in more than one cellular compartment. Specific targeting of proteins to compartments inside of eukaryotic cells is mediated by defined sequence motifs. To achieve multiple targeting to different compartments cells use a variety of strategies. Here, we focus on mechanisms leading to dual targeting of peroxisomal proteins. In many instances, isoforms of peroxisomal proteins with distinct intracellular localization are encoded by separate genes. But also single genes can give rise to differentially localized proteins. Different isoforms can be generated by use of alternative transcriptional start sites, by differential splicing or ribosomal read-through of stop codons. In all these cases different peptide variants are produced, of which only one carries a peroxisomal targeting signal. Alternatively, peroxisomal proteins contain additional signals that compete for intracellular targeting. Dual localization of proteins residing in both the cytoplasm and in peroxisomes may also result from use of inefficient targeting signals. The recent observation that some bona fide cytoplasmic enzymes were also found in peroxisomes indicates that dual targeting of proteins to both the cytoplasm and the peroxisome might be more widespread. Although current knowledge of proteins exhibiting only partial peroxisomal targeting is far from being complete, we speculate that the metabolic capacity of peroxisomes might be larger than previously assumed.
Collapse
Affiliation(s)
- Julia Ast
- Department of Biology, Philipps University Marburg Marburg, Germany
| | | | | | | |
Collapse
|
11
|
Physiological role of Acyl coenzyme A synthetase homologs in lipid metabolism in Neurospora crassa. EUKARYOTIC CELL 2013; 12:1244-57. [PMID: 23873861 DOI: 10.1128/ec.00079-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acyl coenzyme A (CoA) synthetase (ACS) enzymes catalyze the activation of free fatty acids (FAs) to CoA esters by a two-step thioesterification reaction. Activated FAs participate in a variety of anabolic and catabolic lipid metabolic pathways, including de novo complex lipid biosynthesis, FA β-oxidation, and lipid membrane remodeling. Analysis of the genome sequence of the filamentous fungus Neurospora crassa identified seven putative fatty ACSs (ACS-1 through ACS-7). ACS-3 was found to be the major activator for exogenous FAs for anabolic lipid metabolic pathways, and consistent with this finding, ACS-3 localized to the endoplasmic reticulum, plasma membrane, and septa. Double-mutant analyses confirmed partial functional redundancy of ACS-2 and ACS-3. ACS-5 was determined to function in siderophore biosynthesis, indicating alternative functions for ACS enzymes in addition to fatty acid metabolism. The N. crassa ACSs involved in activation of FAs for catabolism were not specifically defined, presumably due to functional redundancy of several of ACSs for catabolism of exogenous FAs.
Collapse
|
12
|
Abstract
Peroxisomes are ubiquitous and versatile cell organelles. They consist of a single membrane that encloses a proteinaceous matrix. Conserved functions are fatty acid β-oxidation and hydrogen peroxide metabolism. In filamentous fungi, many other metabolic functions have been identified. Also, they contain highly specialized peroxisome-derived structures termed Woronin bodies, which have a structural function in plugging septal pores in order to prevent cytoplasmic bleeding of damaged hyphae.In filamentous fungi peroxisomes play key roles in the production of a range of secondary metabolites such as antibiotics. Most likely the atlas of fungal peroxisomal metabolic pathways is still far from complete. Relative recently discovered functions include their role in biotin biosynthesis as well as in the production of several toxins, among which polyketides. Finally, in filamentous fungi peroxisomes are important for development and pathogenesis.In this contribution we present an overview of our current knowledge on fungal peroxisome formation as well as on their functional diversity.
Collapse
Affiliation(s)
- Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 11103, 9700CC, Groningen, The Netherlands,
| | | |
Collapse
|
13
|
Bleichrodt RJ, van Veluw GJ, Recter B, Maruyama JI, Kitamoto K, Wösten HAB. Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol Microbiol 2012; 86:1334-44. [PMID: 23106143 DOI: 10.1111/mmi.12077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 11/24/2022]
Abstract
Hyphae of higher fungi are compartmentalized by septa. These septa contain a central pore that allows for inter-compartmental and inter-hyphal cytoplasmic streaming. The cytoplasm within the mycelium is therefore considered to be a continuous system. In this study, however, we demonstrate by laser dissection that 40% of the apical septa of exploring hyphae of Aspergillus oryzae are closed. Closure of septa correlated with the presence of a peroxisome-derived organelle, known as Woronin body, near the septal pore. The location of Woronin bodies in the hyphae was dynamic and, as a result, plugging of the septal pore was reversible. Septal plugging was abolished in a ΔAohex1 strain that cannot form Woronin bodies. Notably, hyphal heterogeneity was also affected in the ΔAohex1 strain. Wild-type strains of A. oryzae showed heterogeneous distribution of GFP between neighbouring hyphae at the outer part of the colony when the reporter was expressed from the promoter of the glucoamylase gene glaA or the α-glucuronidase gene aguA. In contrast, GFP fluorescence showed a normal distribution in the case of the ΔAohex1 strain. Taken together, it is concluded that Woronin bodies maintain hyphal heterogeneity in a fungal mycelium by impeding cytoplasmic continuity.
Collapse
Affiliation(s)
- Robert-Jan Bleichrodt
- Department of Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 2012; 485:522-5. [PMID: 22622582 DOI: 10.1038/nature11051] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/21/2012] [Indexed: 11/09/2022]
Abstract
Peroxisomes are eukaryotic organelles important for the metabolism of long-chain fatty acids. Here we show that in numerous fungal species, several core enzymes of glycolysis, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate kinase (PGK), reside in both the cytoplasm and peroxisomes. We detected in these enzymes cryptic type 1 peroxisomal targeting signals (PTS1), which are activated by post-transcriptional processes. Notably, the molecular mechanisms that generate the peroxisomal isoforms vary considerably among different species. In the basidiomycete plant pathogen Ustilago maydis, peroxisomal targeting of Pgk1 results from ribosomal read-through, whereas alternative splicing generates the PTS1 of Gapdh. In the filamentous ascomycete Aspergillus nidulans, peroxisomal targeting of these enzymes is achieved by exactly the opposite mechanisms. We also detected PTS1 motifs in the glycolytic enzymes triose-phosphate isomerase and fructose-bisphosphate aldolase. U. maydis mutants lacking the peroxisomal isoforms of Gapdh or Pgk1 showed reduced virulence. In addition, mutational analysis suggests that GAPDH, together with other peroxisomal NADH-dependent dehydrogenases, has a role in redox homeostasis. Owing to its hidden nature, partial peroxisomal targeting of well-studied cytoplasmic enzymes has remained undetected. Thus, we anticipate that further bona fide cytoplasmic proteins exhibit similar dual targeting.
Collapse
|
15
|
Bourdais A, Bidard F, Zickler D, Berteaux-Lecellier V, Silar P, Espagne E. Wood utilization is dependent on catalase activities in the filamentous fungus Podospora anserina. PLoS One 2012; 7:e29820. [PMID: 22558065 PMCID: PMC3338752 DOI: 10.1371/journal.pone.0029820] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/06/2011] [Indexed: 01/24/2023] Open
Abstract
Catalases are enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. They are implicated in various physiological and pathological conditions but some of their functions remain unclear. In order to decipher the role(s) of catalases during the life cycle of Podospora anserina, we analyzed the role of the four monofunctional catalases and one bifunctional catalase-peroxidase genes present in its genome. The five genes were deleted and the phenotypes of each single and all multiple mutants were investigated. Intriguingly, although the genes are differently expressed during the life cycle, catalase activity is dispensable during both vegetative growth and sexual reproduction in laboratory conditions. Catalases are also not essential for cellulose or fatty acid assimilation. In contrast, they are strictly required for efficient utilization of more complex biomass like wood shavings by allowing growth in the presence of lignin. The secreted CATB and cytosolic CAT2 are the major catalases implicated in peroxide resistance, while CAT2 is the major player during complex biomass assimilation. Our results suggest that P. anserina produces external H2O2 to assimilate complex biomass and that catalases are necessary to protect the cells during this process. In addition, the phenotypes of strains lacking only one catalase gene suggest that a decrease of catalase activity improves the capacity of the fungus to degrade complex biomass.
Collapse
Affiliation(s)
- Anne Bourdais
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Institut Génétique et Développement de Rennes, CNRS, UMR 6061, Rennes, France
- UEB Université Rennes 1, IFR 140, Faculté de Médecine, Rennes, France
| | - Frederique Bidard
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Denise Zickler
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Veronique Berteaux-Lecellier
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Laboratoire d’Excellence « CORAIL », USR 3278 CNRS-EPHE, CRIOBE, BP 1013, Moorea, French Polynesia
| | - Philippe Silar
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Univ Paris Diderot, Sorbonne Paris Cité, UFR des Sciences du Vivant, Paris, France
| | - Eric Espagne
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- * E-mail:
| |
Collapse
|
16
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
17
|
Antonenkov VD, Hiltunen JK. Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1374-86. [PMID: 22206997 DOI: 10.1016/j.bbadis.2011.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 02/08/2023]
Abstract
Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for 'bulky' solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel - mammalian Pxmp2 protein - have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
18
|
Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G. Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev Cell 2011; 21:457-68. [PMID: 21920312 DOI: 10.1016/j.devcel.2011.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/28/2022]
Abstract
A fundamental question in cell biology is how cells control organelle composition and abundance. Woronin bodies are fungal peroxisomes centered on a crystalline core of the self-assembled HEX protein. Despite using the canonical peroxisome import machinery for biogenesis, Woronin bodies are scarce compared to the overall peroxisome population. Here, we show that HEX oligomers promote the differentiation of a subpopulation of peroxisomes, which become enlarged and highly active in matrix protein import. HEX physically associates with the essential matrix import peroxin, PEX26, and promotes its enrichment in the membrane of differentiated peroxisomes. In addition, a PEX26 mutant that disrupts differentiation produces increased numbers of aberrantly small Woronin bodies. Our data suggest a mechanism where HEX oligomers recruit a key component of the import machinery, which promotes the import of additional HEX. This type of positive feedback provides a basic mechanism for the production of an organelle subpopulation of distinct composition and abundance.
Collapse
Affiliation(s)
- Fangfang Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
19
|
Bartoszewska M, Opaliński L, Veenhuis M, van der Klei IJ. The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnol Lett 2011; 33:1921-31. [PMID: 21660569 PMCID: PMC3173629 DOI: 10.1007/s10529-011-0664-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/24/2011] [Indexed: 01/08/2023]
Abstract
Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells.
Collapse
Affiliation(s)
- Magdalena Bartoszewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 11103, 9700 CC Groningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Abstract
The biogenesis of peroxisomal matrix and membrane proteins is substantially different from the biogenesis of proteins of other subcellular compartments, such as mitochondria and chloroplasts, that are of endosymbiotic origin. Proteins are targeted to the peroxisome matrix through interactions between specific targeting sequences and receptor proteins, followed by protein translocation across the peroxisomal membrane. Recent advances have shed light on the nature of the peroxisomal translocon in matrix protein import and the molecular mechanisms of receptor recycling. Furthermore, the endoplasmic reticulum has been shown to play an important role in peroxisomal membrane protein biogenesis. Defining the molecular events in peroxisome assembly may enhance our understanding of the etiology of human peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | | | | |
Collapse
|
21
|
Gel-based mass spectrometric and computational approaches to the mitochondrial proteome of Neurospora. Fungal Genet Biol 2011; 48:526-36. [DOI: 10.1016/j.fgb.2010.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/18/2022]
|
22
|
Reumann S. Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics. Proteomics 2011; 11:1764-79. [PMID: 21472859 DOI: 10.1002/pmic.201000681] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/06/2011] [Accepted: 02/11/2011] [Indexed: 12/23/2022]
Abstract
In the past few years, proteome analysis of Arabidopsis peroxisomes has been established by the complementary efforts of four research groups and has emerged as the major unbiased approach to identify new peroxisomal proteins on a large scale. Collectively, more than 100 new candidate proteins from plant peroxisomes have been identified, including long-awaited low-abundance proteins. More than 50 proteins have been validated as peroxisome targeted, nearly doubling the number of established plant peroxisomal proteins. Sequence homologies of the new proteins predict unexpected enzyme activities, novel metabolic pathways and unknown non-metabolic peroxisome functions. Despite this remarkable success, proteome analyses of plant peroxisomes remain highly material intensive and require major preparative efforts. Characterization of the membrane proteome or post-translational protein modifications poses major technical challenges. New strategies, including quantitative mass spectrometry methods, need to be applied to allow further identifications of plant peroxisomal proteins, such as of stress-inducible proteins. In the long process of defining the complete proteome of plant peroxisomes, the prediction of peroxisome-targeted proteins from plant genome sequences emerges as an essential complementary approach to identify additional peroxisomal proteins that are, for instance, specific to peroxisome variants from minor tissues and organs or to abiotically stressed model and crop plants.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| |
Collapse
|