1
|
Hu L, Zhu Y, Zhong C, Cai Q, Zhang H, Zhang X, Yao Q, Hang Y, Ge Y, Hu Y. Discrimination of three commercial tuna species through species-specific peptides: From high-resolution mass spectrometry discovery to MRM validation. Food Res Int 2024; 187:114462. [PMID: 38763689 DOI: 10.1016/j.foodres.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.
Collapse
Affiliation(s)
- Lingping Hu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China; College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Chao Zhong
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China.
| | - Xiaomei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China.
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Yuyu Hang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yingliang Ge
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yaqin Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| |
Collapse
|
2
|
Alfaro-Sifuentes R, Lares-Jiménez LF, Rojas-Hernández S, Carrasco-Yépez MM, Rojas-Ortega DA, Rodriguez-Anaya LZ, Gonzalez-Galaviz JR, Lares-Villa F. Immunogens in Balamuthia mandrillaris: a proteomic exploration. Parasitol Res 2024; 123:173. [PMID: 38536506 DOI: 10.1007/s00436-024-08193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Balamuthia mandrillaris is the causative agent of granulomatous amoebic encephalitis, a rare and often fatal infection affecting the central nervous system. The amoeba is isolated from diverse environmental sources and can cause severe infections in both immunocompromised and immunocompetent individuals. Given the limited understanding of B. mandrillaris, our research aimed to explore its protein profile, identifying potential immunogens crucial for early granulomatous amoebic encephalitis diagnosis. Cultures of B. mandrillaris and other amoebas were grown under axenic conditions, and total amoebic extracts were obtained. Proteomic analyses, including two-dimensional electrophoresis and mass spectrometry, were performed. A 50-kDa band showed a robust recognition of antibodies from immunized BALB/c mice; peptides contained in this band were matched with elongation factor-1 alpha, which emerged as a putative key immunogen. Besides, lectin blotting revealed the presence of glycoproteins in B. mandrillaris, and confocal microscopy demonstrated the focal distribution of the 50-kDa band throughout trophozoites. Cumulatively, these observations suggest the participation of the 50-kDa band in adhesion and recognition mechanisms. Thus, these collective findings demonstrate some protein characteristics of B. mandrillaris, opening avenues for understanding its pathogenicity and developing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Rosalía Alfaro-Sifuentes
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México.
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México
| | - Saul Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, México
| | | | - Diego Alexander Rojas-Ortega
- Centro de Investigación en Ciencias de La Salud (CICSA), FCS, Universidad Anáhuac México, 52786, Huixquilucan, Estado de México, México
| | | | | | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México.
| |
Collapse
|
3
|
Lakshmanan R, Loo JA. Top-Down Protein Identification using a Time-of-Flight Mass Spectrometer and Data Independent Acquisition. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:136-144. [PMID: 31105465 PMCID: PMC6519736 DOI: 10.1016/j.ijms.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Top-down mass spectrometry and direct dissociation of gas phase intact proteins have been demonstrated to be a powerful platform for identifying proteins from complex mixtures and for elucidating post-translational modifications (PTMs). Fragmentation of proteins in the atmospheric pressure/vacuum interface of the electrospray ionization mass spectrometer is an effective dissociation technique that can be utilized for on-line HPLC top-down analysis. We demonstrate the capability to perform intact protein identifications in a single-stage time-of- flight (TOF) mass spectrometer in a data independent (DIA) acquisition fashion by rapidly switching the in-source dissociation (ISD) energy during protein elution from a liquid chromatography (LC) column. The intact protein and product ion masses obtained at low and high ISD energies, respectively, were measured using a TOF mass analyzer. By coupling on-line protein separations to dissociation in the atmospheric pressure/vacuum interface region of the mass spectrometer, we identified proteins in simple complexity mixtures, including subunits from the human 20S proteasome complex, and PTMs such as phosphorylation and N-terminal acetylation events. This proof-of-principle study demonstrates that a data-independent pseudo- MS/MS method could be a relatively in-expensive platform for top-down MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
4
|
Gorr TA, Vogel J. Western blotting revisited: Critical perusal of underappreciated technical issues. Proteomics Clin Appl 2015; 9:396-405. [DOI: 10.1002/prca.201400118] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Thomas A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zürich; Zürich Switzerland
- Center for Pediatrics and Adolescent Medicine; Clinic IV: Division of Pediatric Hematology and Oncology; University Medical Center Freiburg; Freiburg Germany
| | - Johannes Vogel
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zürich; Zürich Switzerland
| |
Collapse
|
5
|
Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014; 29:32-58. [DOI: 10.1016/j.rbmo.2014.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 02/08/2023]
|
6
|
Casado-Vela J, Fuentes M, Franco-Zorrilla JM. Screening of Protein–Protein and Protein–DNA Interactions Using Microarrays. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:231-81. [DOI: 10.1016/b978-0-12-800453-1.00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Hossain Z, Khatoon A, Komatsu S. Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 2013; 12:4670-84. [PMID: 24016329 DOI: 10.1021/pr400604b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plant response to abiotic stresses depends upon the fast activation of molecular cascades involving stress perception, signal transduction, changes in gene and protein expression and post-translational modification of stress-induced proteins. Legumes are extremely sensitive to flooding, drought, salinity and heavy metal stresses, and soybean is not an exception of that. Invention of immobilized pH gradient strips followed by advancement in mass spectrometry has made proteomics a fast, sensitive and reliable technique for separation, identification and characterization of stress-induced proteins. As the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in stress tolerance mechanism. Identifying master regulator proteins that play key roles in the abiotic stress response pathway is fundamental in providing opportunities for developing genetically engineered stress-tolerant crop plants. This review highlights recent contributions in the field of soybean biology to comprehend the complex mechanism of abiotic stress acclimation. Furthermore, strengths and weaknesses of different proteomic methodologies of extracting complete proteome and challenges and future prospects of soybean proteome study both at organ and whole plant levels are discussed in detail to get new insights into the plant abiotic stress response mechanism.
Collapse
Affiliation(s)
- Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University , Kolkata 700126, West Bengal, India
| | | | | |
Collapse
|
8
|
Mukherjee J, Po BHK, Chiu JMY, Wu RSS, Qian PY, Thiyagarajan V. Polybrominated diphenyl ethers do not affect metamorphosis but alter the proteome of the invasive slipper limpet Crepidula onyx. MARINE POLLUTION BULLETIN 2013; 73:273-281. [PMID: 23743271 DOI: 10.1016/j.marpolbul.2013.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
Man-made polybrominated diphenyl ethers (PBDEs) used as flame retardants in various consumer products may be harmful to marine organisms. Larvae of some marine invertebrates, especially invasive species, can develop resistance to PBDEs through altered protein expression patterns or proteome plasticity. This is the first report of a proteomics approach to study BDE-47 induced molecular changes in the invasive limpet Crepidula onyx. Larvae of C. onyx were cultured for 5 days (hatching to metamorphosis) in the presence of BDE-47 (1 μg L(-1)). Using a 2-DE proteomics approach with triple quadrupole and high-resolution TOF-MS, we showed that BDE-47 altered the proteome structure but not the growth or metamorphosis of C. onyx larvae. We found eight significant differentially expressed proteins in response to BDE-47, deemed the protein expression signature, consisting of cytoskeletal, stress tolerance, metabolism and energy production related proteins. Our data suggest C. onyx larvae have adequate proteome plasticity to tolerate BDE-47 toxicity.
Collapse
Affiliation(s)
- Joy Mukherjee
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | | | | | | | | | | |
Collapse
|
9
|
Uversky VN. The UBE2E proteins as conjugating dispersers: extending function with extended extensions. J Mol Biol 2013; 425:4067-70. [PMID: 23871835 DOI: 10.1016/j.jmb.2013.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
10
|
Protein-Protein Interactions: Gene Acronym Redundancies and Current Limitations Precluding Automated Data Integration. Proteomes 2013; 1:3-24. [PMID: 28250396 PMCID: PMC5314489 DOI: 10.3390/proteomes1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/31/2022] Open
Abstract
Understanding protein interaction networks and their dynamic changes is a major challenge in modern biology. Currently, several experimental and in silico approaches allow the screening of protein interactors in a large-scale manner. Therefore, the bulk of information on protein interactions deposited in databases and peer-reviewed published literature is constantly growing. Multiple databases interfaced from user-friendly web tools recently emerged to facilitate the task of protein interaction data retrieval and data integration. Nevertheless, as we evidence in this report, despite the current efforts towards data integration, the quality of the information on protein interactions retrieved by in silico approaches is frequently incomplete and may even list false interactions. Here we point to some obstacles precluding confident data integration, with special emphasis on protein interactions, which include gene acronym redundancies and protein synonyms. Three human proteins (choline kinase, PPIase and uromodulin) and three different web-based data search engines focused on protein interaction data retrieval (PSICQUIC, DASMI and BIPS) were used to explain the potential occurrence of undesired errors that should be considered by researchers in the field. We demonstrate that, despite the recent initiatives towards data standardization, manual curation of protein interaction networks based on literature searches are still required to remove potential false positives. A three-step workflow consisting of: (i) data retrieval from multiple databases, (ii) peer-reviewed literature searches, and (iii) data curation and integration, is proposed as the best strategy to gather updated information on protein interactions. Finally, this strategy was applied to compile bona fide information on human DREAM protein interactome, which constitutes liable training datasets that can be used to improve computational predictions.
Collapse
|
11
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Wormwood KL, Dao S, Patel S, Clarkson BD, Darie CC. Automated Mass Spectrometry–Based Functional Assay for the Routine Analysis of the Secretome. ACTA ACUST UNITED AC 2013; 18:19-29. [DOI: 10.1177/2211068212454738] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Casado-Vela J, Lacal JC, Elortza F. Protein chimerism: Novel source of protein diversity in humans adds complexity to bottom-up proteomics. Proteomics 2012; 13:5-11. [DOI: 10.1002/pmic.201200371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/04/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Juan Casado-Vela
- Centro Nacional de Biotecnología. Lab 115. Dpt. Biología Molecular y Celular; Spanish National Research Council (CSIC); 28049 Madrid Spain
| | - Juan Carlos Lacal
- Translational Oncology Unit; Instituto de Investigaciones Biomédicas ‘Alberto Sols’; Spanish National Research Council (CSIC-UAM); Madrid Spain
| | - Felix Elortza
- Proteomics Platform; CIC bioGUNE; CIBERehd, ProteoRed-ISCIII; Technology Park of Bizkaia; Derio Spain
| |
Collapse
|
13
|
Bonet-Costa C, Vilaseca M, Diema C, Vujatovic O, Vaquero A, Omeñaca N, Castejón L, Bernués J, Giralt E, Azorín F. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1. J Proteomics 2012; 75:4124-38. [PMID: 22647927 DOI: 10.1016/j.jprot.2012.05.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/18/2012] [Accepted: 05/20/2012] [Indexed: 12/27/2022]
Abstract
Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date.
Collapse
Affiliation(s)
- Carles Bonet-Costa
- Institute of Molecular Biology of Barcelona, CSIC, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Martín-Rojas T, Gil-Dones F, Lopez-Almodovar LF, Padial LR, Vivanco F, Barderas MG. Proteomic profile of human aortic stenosis: insights into the degenerative process. J Proteome Res 2012; 11:1537-50. [PMID: 22276806 DOI: 10.1021/pr2005692] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degenerative aortic stenosis is the most common worldwide cause of valve replacement. While it shares certain risk factors with coronary artery disease, it is not delayed or reversed by reducing exposure to risk factors (e.g., therapies that lower lipids). Therefore, it is necessary to better understand its pathophysiology for preventive measures to be taken. In this work, aortic valve samples were collected from 20 patients that underwent aortic valve replacement (55% males, mean age of 74 years) and 20 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry, and 35 protein species were clearly increased in aortic valves, including apolipoprotein AI, alpha-1-antitrypsin, serum albumin, lumican, alfa-1-glycoprotein, vimentin, superoxide dismutase Cu-Zn, serum amyloid P-component, glutathione S-transferase-P, fatty acid-binding protein, transthyretin, and fibrinogen gamma. By contrast, 8 protein species were decreased (transgelin, haptoglobin, glutathione peroxidase 3, HSP27, and calreticulin). All of the proteins identified play a significant role in cardiovascular processes, such as fibrosis, homeostasis, and coagulation. The significant changes observed in the abundance of key cardiovascular proteins strongly suggest that they can be involved in the pathogenesis of degenerative aortic stenosis. Further studies are warranted to better understand this process before we can attempt to modulate it.
Collapse
Affiliation(s)
- Tatiana Martín-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Casado-Vela J, Cebrián A, Gómez del Pulgar MT, Lacal JC. Approaches for the study of cancer: towards the integration of genomics, proteomics and metabolomics. Clin Transl Oncol 2012; 13:617-28. [PMID: 21865133 DOI: 10.1007/s12094-011-0707-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent technological advances, combined with the development of bioinformatic tools, allow us to better address biological questions combining -omic approaches (i.e., genomics, metabolomics and proteomics). This novel comprehensive perspective addresses the identification, characterisation and quantitation of the whole repertoire of genes, proteins and metabolites occurring in living organisms. Here we provide an overview of recent significant advances and technologies used in genomics, metabolomics and proteomics. We also underline the importance and limits of mass accuracy in mass spectrometry-based -omics and briefly describe emerging types of fragmentation used in mass spectrometry. The range of instruments and techniques used to address the study of each -omic approach, which provide vast amounts of information (usually termed "high-throughput" technologies in the literature) is briefly discussed, including names, links and descriptions of the main databases, data repositories and resources used. Integration of multiple -omic results and procedures seems necessary. Therefore, an emerging challenge is the integration of the huge amount of data generated and the standardisation of the procedures and methods used. Functional data integration will lead to answers to unsolved questions, hopefully, applicable to clinical practice and management of patients.
Collapse
Affiliation(s)
- Juan Casado-Vela
- Translational Oncology Unit, Instituto de Investigaciones Biomédicas Alberto Sols, Spanish National Research Council, C/ Arturo Duperier 4, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Fushman D, Wilkinson KD. Structure and recognition of polyubiquitin chains of different lengths and linkage. F1000 BIOLOGY REPORTS 2011; 3:26. [PMID: 22162729 PMCID: PMC3229271 DOI: 10.3410/b3-26] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The polyubiquitin signal is post-translationally attached to a large number of proteins, often directing formation of macromolecular complexes resulting in the translocation, assembly or degradation of the attached protein. Recent structural and functional studies reveal general mechanisms by which different architectures and length of the signal are distinguished.
Collapse
Affiliation(s)
- David Fushman
- Department of Chemistry and Biochemistry, University of MarylandCollege Park, MD 20742USA
| | - Keith D. Wilkinson
- Department of Biochemistry, Emory University School of MedicineAtlanta, GA 30322USA
| |
Collapse
|
17
|
Casado-Vela J, Gómez del Pulgar T, Cebrián A, Alvarez-Ayerza N, Lacal JC. Human urine proteomics: building a list of human urine cancer biomarkers. Expert Rev Proteomics 2011; 8:347-60. [PMID: 21679116 DOI: 10.1586/epr.11.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the last decade, several reports have focused on the identification and characterization of proteins present in urine. In an effort to build a list of proteins of interest as biomarkers, we reviewed the largest urine proteomes and built two updated lists of proteins of interest (available as supplementary tables). The first table includes a consensus list of 443 proteins found in urine by independent laboratories and reported on the top three largest urine proteomes currently published. This consensus list of proteins could serve as biomarkers to diagnose, monitor and manage a number of diseases. Here, we focus on a reduced list of 35 proteins with potential interest as cancer biomarkers in urine following two criteria: first, proteins previously detected in urine using bottom-up proteomic experiments, and second, those suggested as cancer protein biomarkers in human plasma. In an effort to standardize the information presented and its use in future studies, here we include the updated International Protein Index (v. 3.80) and primary Swiss-Prot accession numbers, official gene symbols and recommended full names. The main variables that influence urine proteomic experiments are also discussed.
Collapse
Affiliation(s)
- Juan Casado-Vela
- Translational Oncology Unit, Instituto de Investigaciones Biomédicas Alberto Sols, Spanish National Research Council (CSIC), 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Calligaris D, Villard C, Lafitte D. Advances in top-down proteomics for disease biomarker discovery. J Proteomics 2011; 74:920-34. [DOI: 10.1016/j.jprot.2011.03.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/01/2011] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
|