1
|
Structure-Based Drug Design for Tuberculosis: Challenges Still Ahead. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based and computer-aided drug design approaches are commonly considered to have been successful in the fields of cancer and antiviral drug discovery but not as much for antibacterial drug development. The search for novel anti-tuberculosis agents is indeed an emblematic example of this trend. Although huge efforts, by consortiums and groups worldwide, dramatically increased the structural coverage of the Mycobacterium tuberculosis proteome, the vast majority of candidate drugs included in clinical trials during the last decade were issued from phenotypic screenings on whole mycobacterial cells. We developed here three selected case studies, i.e., the serine/threonine (Ser/Thr) kinases—protein kinase (Pkn) B and PknG, considered as very promising targets for a long time, and the DNA gyrase of M. tuberculosis, a well-known, pharmacologically validated target. We illustrated some of the challenges that rational, target-based drug discovery programs in tuberculosis (TB) still have to face, and, finally, discussed the perspectives opened by the recent, methodological developments in structural biology and integrative techniques.
Collapse
|
2
|
Muthu M, Deenadayalan A, Ramachandran D, Paul D, Gopal J, Chun S. A state-of-art review on the agility of quantitative proteomics in tuberculosis research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Shah MA, Ullah R, March MD, Shah MS, Ismat F, Habib M, Iqbal M, Onesti S, Rahman M. Overexpression and characterization of the 100K protein of Fowl adenovirus-4 as an antiviral target. Virus Res 2017; 238:218-225. [PMID: 28666898 DOI: 10.1016/j.virusres.2017.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
100K is an important scaffolding protein of adenoviruses including fowl adenovirus serotype 4 (FAdV-4) that causes inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) in poultry. 100K carries out the trimerization of the major capsid hexon protein of the virus for the generation of new virions inside the target host cells. Despite its critical role for FAdV-4, no structural study, in particular, has been conducted so far. Here, the overexpression of soluble 100K protein was successfully carried out in E. coli using various expression constructs and purification yield of 3mg per litre culture volume was obtained. Gel filtration chromatography suggested that 100K protein exists in trimeric form. Circular dichroism and Fourier transform infrared spectroscopy clearly reveal that 100K protein folds with a high content of α-helices. The 3-dimentional homology model of the 100K protein, refined with molecular dynamics tools also depicts higher α-helical content within the protein model. Moreover, overexpressed recombinant 100K protein could be used to differentiate vaccinated and FAdV-4 infected chickens on the basis of higher serum anti 100K antibody titres. Our work provides preliminary structural and functional results to study biological role of the 100K protein and for further investigations to develop 100K inhibitors to control IBH-HPS in poultry.
Collapse
Affiliation(s)
- Majid Ali Shah
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza 34149, Trieste, Italy; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | - Raheem Ullah
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza 34149, Trieste, Italy; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | - Matteo De March
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza 34149, Trieste, Italy
| | - Muhammad Salahuddin Shah
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Vaccine Development Group, Animal Sciences Division, NIAB, Faisalabad, Pakistan
| | - Fouzia Ismat
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | - Mudasser Habib
- Vaccine Development Group, Animal Sciences Division, NIAB, Faisalabad, Pakistan
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza 34149, Trieste, Italy
| | - Moazur Rahman
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan.
| |
Collapse
|
4
|
Sultana R, Tanneeru K, Kumar ABR, Guruprasad L. Prediction of Certain Well-Characterized Domains of Known Functions within the PE and PPE Proteins of Mycobacteria. PLoS One 2016; 11:e0146786. [PMID: 26891364 PMCID: PMC4758615 DOI: 10.1371/journal.pone.0146786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
The PE and PPE protein family are unique to mycobacteria. Though the complete genome sequences for over 500 M. tuberculosis strains and mycobacterial species are available, few PE and PPE proteins have been structurally and functionally characterized. We have therefore used bioinformatics tools to characterize the structure and function of these proteins. We selected representative members of the PE and PPE protein family by phylogeny analysis and using structure-based sequence annotation identified ten well-characterized protein domains of known function. Some of these domains were observed to be common to all mycobacterial species and some were species specific.
Collapse
Affiliation(s)
- Rafiya Sultana
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | |
Collapse
|
5
|
Ochoa-Montaño B, Mohan N, Blundell TL. CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav026. [PMID: 25833954 PMCID: PMC4381106 DOI: 10.1093/database/bav026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/01/2015] [Indexed: 11/18/2022]
Abstract
Tuberculosis kills more than a million people annually and presents increasingly high levels of resistance against current first line drugs. Structural information about Mycobacterium tuberculosis (Mtb) proteins is a valuable asset for the development of novel drugs and for understanding the biology of the bacterium; however, only about 10% of the ∼4000 proteins have had their structures determined experimentally. The CHOPIN database assigns structural domains and generates homology models for 2911 sequences, corresponding to ∼73% of the proteome. A sophisticated pipeline allows multiple models to be created using conformational states characteristic of different oligomeric states and ligand binding, such that the models reflect various functional states of the proteins. Additionally, CHOPIN includes structural analyses of mutations potentially associated with drug resistance. Results are made available at the web interface, which also serves as an automatically updated repository of all published Mtb experimental structures. Its RESTful interface allows direct and flexible access to structures and metadata via intuitive URLs, enabling easy programmatic use of the models. Database URL: http://structure.bioc.cam.ac.uk/chopin
Collapse
Affiliation(s)
- Bernardo Ochoa-Montaño
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Nishita Mohan
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
6
|
Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics. Tuberculosis (Edinb) 2015; 95:131-6. [DOI: 10.1016/j.tube.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/05/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022]
|
7
|
Anbazhagan P, Harijan RK, Kiema TR, Janardan N, Murthy M, Michels PA, Juffer AH, Wierenga RK. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis (Edinb) 2014; 94:405-12. [DOI: 10.1016/j.tube.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
8
|
Abstract
Proteins are macromolecules that serve a cell’s myriad processes and functions in all living organisms via dynamic interactions with other proteins, small molecules and cellular components. Genetic variations in the protein-encoding regions of the human genome account for >85% of all known Mendelian diseases, and play an influential role in shaping complex polygenic diseases. Proteins also serve as the predominant target class for the design of small molecule drugs to modulate their activity. Knowledge of the shape and form of proteins, by means of their three-dimensional structures, is therefore instrumental to understanding their roles in disease and their potentials for drug development. In this chapter we outline, with the wide readership of non-structural biologists in mind, the various experimental and computational methods available for protein structure determination. We summarize how the wealth of structure information, contributed to a large extent by the technological advances in structure determination to date, serves as a useful tool to decipher the molecular basis of genetic variations for disease characterization and diagnosis, particularly in the emerging era of genomic medicine, and becomes an integral component in the modern day approach towards rational drug development.
Collapse
Affiliation(s)
- Nelson L.S. Tang
- Dept. of Chemical Pathology and Lab. of Genetics of Disease Suscept., The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Terence Poon
- Department of Paediatrics and Proteomics Laboratory, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
9
|
DeJesus MA, Zhang YJ, Sassetti CM, Rubin EJ, Sacchettini JC, Ioerger TR. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. ACTA ACUST UNITED AC 2013; 29:695-703. [PMID: 23361328 DOI: 10.1093/bioinformatics/btt043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Next-generation sequencing affords an efficient analysis of transposon insertion libraries, which can be used to identify essential genes in bacteria. To analyse this high-resolution data, we present a formal Bayesian framework for estimating the posterior probability of essentiality for each gene, using the extreme-value distribution to characterize the statistical significance of the longest region lacking insertions within a gene. We describe a sampling procedure based on the Metropolis-Hastings algorithm to calculate posterior probabilities of essentiality while simultaneously integrating over unknown internal parameters. RESULTS Using a sequence dataset from a transposon library for Mycobacterium tuberculosis, we show that this Bayesian approach predicts essential genes that correspond well with genes shown to be essential in previous studies. Furthermore, we show that by using the extreme-value distribution to characterize genomic regions lacking transposon insertions, this method is capable of identifying essential domains within genes. This approach can be used for analysing transposon libraries in other organisms and augmenting essentiality predictions with statistical confidence scores.
Collapse
Affiliation(s)
- Michael A DeJesus
- Department of Computer Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Lew JM, Mao C, Shukla M, Warren A, Will R, Kuznetsov D, Xenarios I, Robertson BD, Gordon SV, Schnappinger D, Cole ST, Sobral B. Database resources for the tuberculosis community. Tuberculosis (Edinb) 2013; 93:12-7. [PMID: 23332401 DOI: 10.1016/j.tube.2012.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Access to online repositories for genomic and associated "-omics" datasets is now an essential part of everyday research activity. It is important therefore that the Tuberculosis community is aware of the databases and tools available to them online, as well as for the database hosts to know what the needs of the research community are. One of the goals of the Tuberculosis Annotation Jamboree, held in Washington DC on March 7th-8th 2012, was therefore to provide an overview of the current status of three key Tuberculosis resources, TubercuList (tuberculist.epfl.ch), TB Database (www.tbdb.org), and Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org). Here we summarize some key updates and upcoming features in TubercuList, and provide an overview of the PATRIC site and its online tools for pathogen RNA-Seq analysis.
Collapse
Affiliation(s)
- Jocelyne M Lew
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: Perhaps more? Biochimie 2012; 94:110-6. [DOI: 10.1016/j.biochi.2011.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/27/2011] [Indexed: 02/03/2023]
|